
Polyspace® Bug Finder™ Access™
User’s Guide

R2021a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Bug Finder™ Access™ User's Guide
© COPYRIGHT 2019-2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2019 Online only New for Version 2.0 (Release R2019a)
September 2019 Online Only Revised for Version 2.1 (Release 2019b)
March 2020 Online Only Revised for Version 2.2 (Release 2020a)
September 2020 Online Only Revised for Version 2.3 (Release 2020b)
March 2021 Online Only Revised for Version 3.0 (Release 2021a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Interpret Polyspace Bug Finder Results
1

Interpret Bug Finder Results in Polyspace Access Web Interface 1-2
Interpret Result Details Message . 1-3
Find Root Cause of Result . 1-4

Investigate the Cause of Empty Results List . 1-7

Dashboard . 1-9

Code Metrics Dashboard . 1-11

Quality Objectives Dashboard . 1-14
Customize Software Quality Objectives . 1-15

Call Hierarchy . 1-19

Configuration Settings . 1-21

Result Details . 1-24

Results List . 1-26

Review History . 1-28

Source Code . 1-30
Tooltips . 1-30
Examine Source Code . 1-31
Expand Macros . 1-31
View Code Block . 1-32
Navigate from Code to Model . 1-33

Track Issue in Bug Tracking Tool . 1-35
Create a Ticket . 1-35
Manage Existing Tickets . 1-36

Bug Finder Quality Objectives . 1-38
Comparing Analysis Results Against Quality Objectives 1-41

Software Quality Objective Subsets (C:2004) . 1-43
Rules in SQO-Subset1 . 1-43
Rules in SQO-Subset2 . 1-44

Software Quality Objective Subsets (AC AGC) . 1-47
Rules in SQO-Subset1 . 1-47

iii

Contents

Rules in SQO-Subset2 . 1-47

Software Quality Objective Subsets (C:2012) . 1-50
Guidelines in SQO-Subset1 . 1-50
Guidelines in SQO-Subset2 . 1-51

Avoid Violations of MISRA C 2012 Rules 8.x . 1-53

Software Quality Objective Subsets (C++) . 1-56
SQO Subset 1 – Direct Impact on Selectivity . 1-56
SQO Subset 2 – Indirect Impact on Selectivity . 1-57

Coding Rule Subsets Checked Early in Analysis . 1-62
MISRA C: 2004 and MISRA AC AGC Rules . 1-62
MISRA C: 2012 Rules . 1-69

HIS Code Complexity Metrics . 1-77
Project . 1-77
File . 1-77
Function . 1-77

Fix or Comment Polyspace Results
2

Address Results in Polyspace Access Through Bug Fixes or Justifications
. 2-2

Add Review Information in Result Details pane . 2-2
Comment or Annotate in Code . 2-3

Hide Known or Acceptable Polyspace Results . 2-5
Review Workflow Using Code Annotations . 2-5
Code Annotation Syntax . 2-6
Code Annotation Syntax Examples . 2-9
Alternatives to Code Annotations . 2-10

Short Names of Bug Finder Defect Checkers . 2-12

Short Names of Code Complexity Metrics . 2-26
Project Metrics . 2-26
File Metrics . 2-26
Function Metrics . 2-26

Define Custom Annotation Format . 2-28
Define Annotation Syntax Format . 2-30
Map Your Annotation to the Polyspace Annotation Syntax 2-33
Define Multiple Custom Annotation Syntaxes . 2-34

Annotation Description Full XML Template . 2-36
Example . 2-39

iv Contents

Manage Results
3

Filter and Sort Results in Polyspace Access Web Interface 3-2
Filter Results . 3-4

Create Custom Filter Groups in Polyspace Access Web Interface 3-6

Compare Analysis Results to Previous Runs . 3-8
Comparison Mode . 3-8

Classification of Defects by Impact . 3-11
High Impact Defects . 3-11
Medium Impact Defects . 3-14
Low Impact Defects . 3-18

Bug Finder Defect Groups . 3-22
Concurrency . 3-22
Cryptography . 3-23
Data flow . 3-23
Dynamic Memory . 3-23
Good Practice . 3-23
Numerical . 3-24
Object Oriented . 3-24
Programming . 3-24
Resource Management . 3-25
Static Memory . 3-25
Security . 3-25
Tainted data . 3-25

Troubleshooting Polyspace Access
4

Polyspace Access ETL and Web Server services do not start 4-2
Issue . 4-2
Possible Cause: Hyper-V Network Configuration Cannot Resolve Local Host

Names . 4-2

Contact Technical Support About Polyspace Access Issues 4-5

Resolve -xml-annotations-description Errors . 4-7
Issue . 4-7
Possible Solutions . 4-7

v

Configure Polyspace as You Code
5

Configure Polyspace as You Code Extension in Visual Studio 5-2
General Settings . 5-2
Project Settings . 5-3

Configure Polyspace as You Code Extension in Visual Studio Code 5-6
Analysis Engine . 5-6
Analysis Launch Mode . 5-7
Analysis Setup . 5-7
Baseline . 5-15
Trace . 5-16

Configure Polyspace as You Code Plugin in Eclipse 5-17
Preferences . 5-17
Configure Project . 5-18

Options Files for Polyspace Analysis . 5-22
What are Options Files . 5-22
Specifying Options Files . 5-22
Specifying Multiple Options Files . 5-24

Generate Build Options for Polyspace as You Code Analysis in Visual
Studio . 5-25
Configure Polyspace as You Code to Extract Build Configuration 5-25
Specify Analysis Options Manually . 5-27
Import Analysis Options from Polyspace Desktop Project 5-28

Generate Build Options for Polyspace as You Code Analysis in Visual
Studio Code . 5-29
Configure Polyspace as You Code to Extract Build Configuration 5-29
Specify Analysis Options Manually . 5-31
Import Analysis Options from Polyspace Desktop Project 5-32

Generate Build Options for Polyspace as You Code Analysis in Eclipse
. 5-34
Configure Polyspace as You Code to Extract Build Configuration 5-34
Specify Analysis Options Manually . 5-36
Import Analysis Options from Polyspace Desktop Project 5-36

Generate Build Options for Polyspace as You Code Analysis at the
Command Line . 5-38

Use polyspace-configure to Generate Build Options File 5-38
Specify Analysis Options Manually . 5-39
Import Analysis Options from Polyspace Desktop Project 5-40

Baseline Polyspace as You Code Results in Visual Studio 5-41
What Baselined Results Look Like . 5-41
Baselining Steps . 5-43

Baseline Polyspace as You Code Results in Visual Studio Code 5-45
What Baselined Results Look Like . 5-45
Baselining Steps . 5-46

vi Contents

Baseline Polyspace as You Code Results in Eclipse 5-50
What Baselined Results Look Like . 5-50
Baselining Steps . 5-51

Baseline Polyspace as You Code Results on Command Line 5-53
What Baselined Results Look Like . 5-53
Baselining Steps . 5-54
Step 1: Identify Project to Use as Baseline . 5-54
Step 2: Download Baseline . 5-55
Step 3: Use Baseline . 5-55

Configure Checkers for Polyspace as You Code in Eclipse 5-57
Select Checkers and Coding Rules . 5-57
Modify Checker Behavior . 5-60

Configure Checkers for Polyspace as You Code in Visual Studio 5-61
Select Checkers and Coding Rules . 5-61
Modify Checker Behavior . 5-63

Configure Checkers for Polyspace as You Code in Visual Studio Code . . 5-64
Configure Checkers in Checkers File . 5-64
Modify Checkers Behavior . 5-66

Configure Checkers for Polyspace as You Code at the Command Line . . 5-68
Configure Checkers and Coding Rules Directly at the Command Line . . . 5-68
Configure Checkers in Checkers file . 5-69
Modify Checkers Behavior . 5-71

Polyspace Bug Finder Defects Checkers Enabled by Default 5-73

Analysis Scope of Polyspace as You Code . 5-78
Results Involve Current File Only . 5-78
Headers Included in Current File Not Analyzed 5-78

Checkers Deactivated in Polyspace as You Code Default Analysis 5-80
Checkers and Coding Rule Deactivated in Polyspace as You Code 5-80
Checkers with Reduced Scope in Polyspace as You Code 5-81

Troubleshoot Failed Analysis or Unexpected Results in Polyspace as You
Code . 5-83

Issue . 5-83
Possible Solutions . 5-83

Reduce Software Complexity by Using Polyspace Checkers 5-86
Configure Thresholds for Software Complexity Checkers 5-86
Identify and Reduce Software Complexity . 5-87

Review Results in Polyspace as You Code
6

Run Polyspace as You Code in Visual Studio and Review Results 6-2
Confirm Installation of Extension . 6-2

vii

Run Analysis on Save . 6-2
Run Analysis on Demand . 6-3
Review Results . 6-3
Justify Results Using Code Annotations . 6-4
View Help . 6-4
Configure Checkers and Other Settings . 6-5

Run Polyspace as You Code in Visual Studio Code and Review Results . . 6-6
Confirm Installation of Extension . 6-6
Run Analysis on Save . 6-6
Run Analysis on Demand . 6-6
Review Results . 6-7
Justify Results Using Code Annotations . 6-8
View Context-Sensitive Help for Result . 6-8
Configure Checkers and Other Settings . 6-9

Run Polyspace as You Code in Eclipse and Review Results 6-10
Confirm Installation of Plugin . 6-10
Run Analysis on Save . 6-10
Run Analysis on Demand . 6-11
Review Results . 6-11
Justify Results Using Code Annotations . 6-12
View Context-Sensitive Help for Result . 6-12
Configure Checkers and Other Settings . 6-13

Run Polyspace as You Code from Command Line and Export Results . . 6-14
Add Install Folder to Path . 6-14
Run Analysis and See Results on Console . 6-14
Store Results in Specific Folder . 6-14
Export Results to JSON Format (SARIF Output) 6-15
Specify Analysis Options by Using Options Files 6-15
Create Options File by Analyzing Build . 6-15

Integrate Polyspace as You Code in IDEs and Editors Without Plugins
. 6-17

Overview of Approach . 6-17
Integration Steps . 6-17
Further Exploration . 6-19

Coding Rule Sets and Concepts
7

Polyspace MISRA C:2004 and MISRA AC AGC Checkers 7-2

MISRA C:2004 and MISRA AC AGC Coding Rules 7-3
Supported MISRA C:2004 and MISRA AC AGC Rules 7-3
Troubleshooting . 7-3
List of Supported Coding Rules . 7-3
Unsupported MISRA C:2004 and MISRA AC AGC Rules 7-36

Polyspace MISRA C:2012 Checkers . 7-38

viii Contents

Essential Types in MISRA C:2012 Rules 10.x . 7-39
Categories of Essential Types . 7-39
How MISRA C:2012 Uses Essential Types . 7-39

Unsupported MISRA C:2012 Guidelines . 7-41

Polyspace MISRA C++ Checkers . 7-42

Unsupported MISRA C++ Coding Rules . 7-43
Language Independent Issues . 7-43
General . 7-44
Lexical Conventions . 7-44
Expressions . 7-44
Declarations . 7-44
Classes . 7-45
Templates . 7-45
Exception Handling . 7-45
Library Introduction . 7-45

Polyspace JSF AV C++ Checkers . 7-47

JSF AV C++ Coding Rules . 7-48
Supported JSF C++ Coding Rules . 7-48
Unsupported JSF++ Rules . 7-66

Configure Target and Compiler Options
8

Specify Target Environment and Compiler Behavior 8-2
Extract Options from Build Command . 8-2
Specify Options Explicitly . 8-3

C/C++ Language Standard Used in Polyspace Analysis 8-5
Supported Language Standards . 8-5
Default Language Standard . 8-5

C11 Language Elements Supported in Polyspace . 8-7

C++11 Language Elements Supported in Polyspace 8-9

C++14 Language Elements Supported in Polyspace 8-12

C++17 Language Elements Supported in Polyspace 8-15

Provide Standard Library Headers for Polyspace Analysis 8-19

Requirements for Project Creation from Build Systems 8-20
Compiler Requirements . 8-20
Build Command Requirements . 8-21

Supported Keil or IAR Language Extensions . 8-23
Special Function Register Data Type . 8-23

ix

Keywords Removed During Preprocessing . 8-24

Remove or Replace Keywords Before Compilation 8-25
Remove Unrecognized Keywords . 8-25
Remove Unrecognized Function Attributes . 8-27

Gather Compilation Options Efficiently . 8-28

Approximations Used During Bug Finder Analysis
9

Inputs in Polyspace Bug Finder . 9-2

Global Variables in Polyspace Bug Finder . 9-3

Volatile Variables in Polyspace Bug Finder . 9-4

x Contents

Interpret Polyspace Bug Finder Results

• “Interpret Bug Finder Results in Polyspace Access Web Interface” on page 1-2
• “Investigate the Cause of Empty Results List” on page 1-7
• “Dashboard” on page 1-9
• “Code Metrics Dashboard” on page 1-11
• “Quality Objectives Dashboard” on page 1-14
• “Call Hierarchy” on page 1-19
• “Configuration Settings” on page 1-21
• “Result Details” on page 1-24
• “Results List” on page 1-26
• “Review History” on page 1-28
• “Source Code” on page 1-30
• “Track Issue in Bug Tracking Tool” on page 1-35
• “Bug Finder Quality Objectives” on page 1-38
• “Software Quality Objective Subsets (C:2004)” on page 1-43
• “Software Quality Objective Subsets (AC AGC)” on page 1-47
• “Software Quality Objective Subsets (C:2012)” on page 1-50
• “Avoid Violations of MISRA C 2012 Rules 8.x” on page 1-53
• “Software Quality Objective Subsets (C++)” on page 1-56
• “Coding Rule Subsets Checked Early in Analysis” on page 1-62
• “HIS Code Complexity Metrics” on page 1-77

1

Interpret Bug Finder Results in Polyspace Access Web
Interface

This topic shows how to review Bug Finder results in the Polyspace Access web interface. For a
similar workflow in the user interface of the Polyspace desktop products, see “Interpret Bug Finder
Results in Polyspace Desktop User Interface” (Polyspace Bug Finder). To see how to review results of
Polyspace as You Code in IDEs, see “Run Polyspace as You Code in IDEs and Review Results”.

When you open the results of a Bug Finder analysis in the REVIEW view of Polyspace Access, you see
a list on the Results List pane. The results consist of defects, coding rule violations or code metrics.

You can first narrow down the focus of your review:

• Use filters in the toolstrip to narrow down the list. For instance, you can focus on the high-impact
defects.

• Click the a column header in the Results List to sort the list according to the content of that
column. For instance you can sort by Group or by File.

Once you narrow down and sort the list, you can begin reviewing individual results. This topic
describes how to review a result.

1 Interpret Polyspace Bug Finder Results

1-2

To begin your review, select a result in the list.

Interpret Result Details Message

Interpret Message

The first step is to understand what is wrong. Read the message on the Result Details pane and the
related line of code on the Source Code pane.

Seek Additional Resources for Help

Sometimes, you need additional help for certain results. Click the icon to open a help page for
the selected result. See code examples illustrating the result. Check external standards such as CERT-
C that provide additional rationale for fixing the issue. When available, click the icon to see fix
suggestions for the defect.

 Interpret Bug Finder Results in Polyspace Access Web Interface

1-3

At this point, you might be ready to decide whether to fix the issue or not. Once you identify a fix, it
might help to review all results of that type together.

Find Root Cause of Result
Sometimes, the root cause might be far from the actual location where the result is displayed. For
instance, a variable that you read might be non-initialized because the initialization is not reachable.
The defect is shown when you read the variable, but the root cause is perhaps a previous if or
while condition that is always false.

Navigate to Related Events

Typically, the Result Details pane shows one sequence of events that leads to the result. The Source
Code pane also highlights these events.

In the above event traceback, this sequence is shown:

1 A variable value is declared.
2 The execution path bypasses an if statement. This information might be relevant if the variable

is initialized inside the if block.
3 Location of the current defect: Non-initialized variable

1 Interpret Polyspace Bug Finder Results

1-4

Typically, the traceback shows major points in the control flow: entering or bypassing conditional
statements or loops, entering a function, and so on. For specific defects, the traceback shows other
kinds of events relevant to the defect. For instance, for a Declaration mismatch defect, the
traceback shows the two locations with conflicting declarations.

Create Your Own Navigation Path

If the event traceback is not available, use other navigation tools to trace your own path through the
code.

Before you begin navigating through pathways in your code, ask the question: What am I looking for?
Based on your answer, choose the appropriate navigation tool. For instance:

• To investigate a Non-initialized variable defect, you might want to make sure that the variable is
not initialized at all. To look for previous instances of the variable, on the Source Code pane,
right-click the variable and select Search For All References. This option lists only instances of a
specific variable and not other variables with the same name in other scopes.

• To investigate a violation of MISRA C:2012 Rule 17.7:

The value returned by a function having non-void return type shall be used.

 Interpret Bug Finder Results in Polyspace Access Web Interface

1-5

you might want to navigate from a function call to the function definition. Right-click the function
and select Go To Definition.

After you navigate away from the current result, use the icon on the Result Details pane to
come back.

To select a different result from the Source Code pane, Ctrl-click the result or right-click and select
Select Results At This Location. The Results Details pane updates but the result you select is not
highlighted in the Results List pane. Clicking a result in the Results List updates the Results
Details and Source Code panes.

See Also

More About
• “Address Results in Polyspace Access Through Bug Fixes or Justifications” on page 2-2
• “Filter and Sort Results in Polyspace Access Web Interface” on page 3-2

1 Interpret Polyspace Bug Finder Results

1-6

Investigate the Cause of Empty Results List
This topic shows how to interpret an empty results list in the Polyspace Access web interface. To see
how to interpret a similar empty list in the user interface of the Polyspace desktop products, see
“Investigate the Cause of Empty Results List” (Polyspace Bug Finder).

When you review results from a Polyspace Bug Finder or Polyspace Bug Finder Server™ analysis, the
Results List pane can be empty or it can display this message:

No results available for currently selected filters,
or no results available for the selected project.

The message can indicate that your code has no defect or coding rule violation. However, before you
reach this conclusion:

1 Open the Run Log pane by going to Layout > Show/Hide View.
2 Maximize the pane by double-clicking the Run Log tab, then use CTRL-F to check for the

following.

• Did all your source files compile?

Search for Failed compilation

If a file does not compile, Bug Finder can return some results, but only files with no
compilation errors are fully analyzed.

• Did you include all your source files in your project?

Search for verifying sources ...

Make sure that all the files that you want to analyze are listed under this message.
3 Open the Configuration Settings pane by going to Layout > Show/Hide View, then:

• Verify that the appropriate options are activated to check for coding standards violations and
to compute code metrics.

• Check if the -fast-analysis option is activated. Bug Finder checks for only a subset of
defects and coding rules in fast analysis mode.

• Click Checkers configuration to see a list all the defects and coding rules checkers selected
for this analysis.

4 Check whether you are applying any filters to the results.

To see which filters you are applying to the results, see the filter bar below the FAMILY
FILTERS section of the toolstrip. To clear all applied filters, click the eraser icon.

 Investigate the Cause of Empty Results List

1-7

If you review results for an analysis you did not configure, discuss the possible causes of an empt
results list with the project build master. If you use polyspace-configure as part of your analysis
workflow, the Run Logand Configuration Settings panes might not contain all the analysis
configuration parameters. For more information on analysis options and project configuration, see the
documentation for Polyspace Bug Finder or Polyspace Bug Finder Server.

See Also

More About
• “Address Results in Polyspace Access Through Bug Fixes or Justifications” on page 2-2

1 Interpret Polyspace Bug Finder Results

1-8

Dashboard
The Dashboard perspective provides an overview of the analysis results in graphical format, with
clickable fields that let you drill down into your findings by project, file, or category.

When you upload an analysis run to the Polyspace Access database, the DASHBOARD updates to
display the statistics for the latest run.

 Dashboard

1-9

In this perspective, you can open additional dashboards to get a snapshot of the quality of your code.
You can see a project overview, or an overview for a family of findings. You can also see an aggregate
of statistics for multiple projects under the same folder.

You can also perform the following actions on this pane:

• Select elements on the graphs to filter results from the Results List pane. See “Filter and Sort
Results in Polyspace Access Web Interface” on page 3-2.

• Open the current project findings in the Polyspace desktop interface.
• Manage projects and user authorizations. See “Manage Project Permissions”.

1 Interpret Polyspace Bug Finder Results

1-10

Code Metrics Dashboard
To view the code complexity metrics that Polyspace computes, use the Code Metrics dashboard. See
“Code Metrics”. Only when you use the option Calculate code metrics (-code-metrics) does
Polyspace compute the code complexity metrics during analysis. For more information on analysis
options, see the documentation for Polyspace Bug Finder or Polyspace Bug Finder Server.

In the Project Explorer, select a project. Use the Code Metrics card in the Project Overview
dashboard to get a quick overview of these code metrics:

• Number of Files
• Number of Lines Without Comment
• Cyclomatic Complexity

If you select a folder in the Project Explorer, you see the number of Sub-project(s) in that folder
and an aggregate of the metrics for all the subprojects.

To open the Code Metrics dashboard, click the Code Metrics icon in the DASHBOARD section of
the toolstrip. Or, click Code Metrics on the card in the Project Overview dashboard.

 Code Metrics Dashboard

1-11

In the Summary section, you see trend charts of the Number of lines Without Comment and
Number of Files for the project.

The other sections of the dashboard display tables with the computed value or range of the different
project, file, and function metrics. When applicable, the table shows the predefined threshold and
pass/fail status for the corresponding code metric. For a list of code complexity metrics thresholds,
see “HIS Code Complexity Metrics” on page 1-77. If you select a folder in the Project Explorer, the
tables in the Code Metrics dashboard do not show the threshold or pass/fail status. The value or
range of the metrics are aggregate of all subprojects in the selected folder. To drill down to a project
from this aggregate view, expand a table row and click the project name.

1 Interpret Polyspace Bug Finder Results

1-12

To improve your code quality, use the pass/fail status to identify and lower metrics values that
exceeds a threshold. For instance, if the Number of Called Functions range exceeds the predefined
threshold, click the range in the Min..Max column to open the Results List for the computed
Number of Called Functions metric. Review the results that exceed the metric threshold. If several
of those functions are always called together, you can write one function that fuses the bodies of
those functions. Call that one function instead of the group of functions that are called together.

 Code Metrics Dashboard

1-13

Quality Objectives Dashboard
To monitor the quality of your code against predefined on page 1-38 software quality thresholds or
user-defined on page 1-15 thresholds, use the Quality Objectives dashboard.

In the Project Overview dashboard, use the Quality Objectives card to get a quick overview of your
progress in achieving a quality objective threshold. The card shows:

• The percentage of findings already addressed to achieve the selected threshold.
• These labels:

• Pass: All findings for this threshold have been addressed.
• In progress: Some findings for this threshold are still open. A finding is open if it has a review

status of Unreviewed, To fix, To investigate, or Other.
• Incomplete: Some checkers required for this threshold were not activated in the analysis. For

instance, if a threshold requires that you address all Bug Finder defects, but the analysis
includes only Numerical defects, the level is incomplete, even if you address all findings. To
see a list of checkers you must activate, click Incomplete.

• Not computed: No quality objective results were computed.
• The name of the quality objectives definition currently assigned to the project. In the previous

card, the Polyspace Software Quality Objectives definition is assigned to the project.
• The assigned Threshold. To select a different threshold or quality objectives definition, click the

gear icon. You must be an Administrator or project Owner to assign quality objective definitions
or thresholds to a project. You can also assign quality objectives by right-clicking a project in the
Project Explorer.

• The Remaining number of findings that you need to address to reach the threshold. Click this
number to open the REVIEW perspective and see these findings in the Results List.

For a more comprehensive view, open the Quality Objectives dashboard. In the Summary section,
click the gear icon on the Quality Level line to pick a threshold and see the remaining open issues,
including a breakdown for each category, such as code metrics or coding rules.

In this Quality Objectives dashboard, 39% of the findings required to achieve threshold SQO4 have
been addressed. There are 187 open issues, which are all Defects.

This table shows the current progress of code quality for all quality objective thresholds. To view the
Results List for a set of open issues, click the corresponding value in the table.

1 Interpret Polyspace Bug Finder Results

1-14

Customize Software Quality Objectives
To customize the thresholds that you use as pass/fail criteria to track the quality of your code, create
or edit quality objective definitions and apply these definitions to specific projects. For instance, you
might have a project where you want to check the quality of your code against only the MISRA
C®:2012 coding standard.

On the Quality Objectives dashboard, click Quality Objectives Settings. You must have the role of
Administrator or Owner to customize the quality objective settings. Users who have the role of
Contributor have a read-only view of the quality objective settings. You cannot edit the Polyspace
Software Quality Objectives definition.

 Quality Objectives Dashboard

1-15

Create or Edit Quality Objectives Definition

To create a quality objectives definition, click New, and enter a name for the new definition. After you
assign this definition to a project, the name of the definition is displayed on the Quality Objectives
card and the summary section of the Quality Objectives dashboard for the project. You can
optionally provide a description for the quality objectives definition and for the different SQO levels of
that definition. Go to the Information tab to view or make additional edits to the descriptions.

To edit the thresholds selection, on the Configuration tab, click a findings family, for instance MISRA
C:2004, and then select a node or expand the node to select individual results. For each family of
results, you can view the nodes by group or by category when available.

When you select nodes in the leftmost part of the table:

• indicates that all entries under the node are enabled.
• indicates that some entries under the node are not enabled.

For the quality objective thresholds under the SQO columns:

• indicates that all the entries that are enabled under the node on that row apply to this
threshold.

• indicates that some of the entries that are enabled under the node on that row do not apply to
this threshold.

1 Interpret Polyspace Bug Finder Results

1-16

For example, in the previous figure, the Language extensions node is expanded. The check box next
to the node is partially filled because rule 2.1 is not enabled. For the thresholds, all the rules that are
enabled under the node apply to thresholds SQO5 and SQO6. Rule 2.2 does not apply to SQO4, which
is why the check box for SQO4 is partially filled.

For Run-time Checks, customize the percentage of findings that you must address or justify for each
threshold. Enter a value between 0 and 100. To disable the selection, leave the entry blank.

For Code Metrics, customize the value of the different metrics for each threshold. To disable the
selection, leave the entry blank.

When you make a selection for a threshold, all higher thresholds inherit that selection. For instance,
if you select a coding rule for SQO3, the rule is also selected for SQO4, SQO5, and SQO6. By default,
when you first enable a node or result, it applies only to SQO6.

To save your changes, click Save or Save as to save your edits in a new quality objectives definition.

The quality objectives statistics for a project are recalculated when:

• You upload a new run for the project.
• You select a finding and make a change to any of the fields in the Result Details pane.

Tip When the Quality Objectives settings and the calculated statistics for a project are out of sync,
the Quality Objectives dashboard displays a warning .

Assign Quality Objectives Definition

To assign a quality objectives definition or level to a project, right-click a project in the Project
Explorer or click the gear icon on the Quality Objectives card or dashboard. Before making
changes to the quality objectives level or definition for a project, make sure that you inform all
Polyspace Access contributors to that project.

By default, the first time you upload results to a new project, Polyspace Access assigns the Polyspace
Software Quality Objectives to that project. To view which projects a quality objectives definition is
assigned to, go to the Project Assignment tab in the Quality Objectives Settings. If you delete a
quality objectives definition, Polyspace Access assigns the Polyspace Software Quality Objectives
to all the projects to which the deleted definition was assigned.

 Quality Objectives Dashboard

1-17

See Also

More About
• “Bug Finder Quality Objectives” on page 1-38
• “Code Metrics”

1 Interpret Polyspace Bug Finder Results

1-18

Call Hierarchy
The Call Hierarchy pane displays the call tree of functions in the source code.

For each function foo, the Call Hierarchy pane lists the functions and tasks that call foo (callers)

and those called by foo (callees). The callers are indicated by . The callees are indicated by .
The Call Hierarchy pane lists direct function calls and indirect calls through function pointers.

Note For Polyspace Bug Finder Access findings, you might not see all callers or callees of a function,
especially for calls through function pointers and dead code.

For instance, Polyspace Bug Finder Access does not display the functions registered with at_exit()
and at_quick_exit(), and called by exit() and quick_exit() respectively.

You open the Call Hierarchy pane by using the icon in your Results Details pane, or by going to
Layout > Show/Hide View.

To update the pane, click a defect on the Results List or CTRL-click a result in the Source Code
pane. You see the function containing the defect with its callers and callees.

In this example, the Call Hierarchy pane displays the function generic_validation, and with its
callers and callees.

Tip To navigate to the call location in the source code, select a caller or callee name

In the Call Hierarchy pane, you can perform these actions:

 Call Hierarchy

1-19

• Show/Hide Callers and Callees

Customize the view to display callers only or callees only. Show or hide callers and callees by
clicking this button

• Navigate Call Hierarchy

You can navigate the call hierarchy in your source code. For a function, double-click a caller or
callee name to navigate to the caller or callee definition in the source code.

• Determine If Function Is Stubbed

From the Stubbed column, you can determine if a function is stubbed. The entries in the column
show why a function was stubbed.

• Automatic: Polyspace cannot find the function definition. For instance, you did not provide the
file containing the definition.

• Std library: The function is a standard library function. You do not provide the function
definition explicitly in your Polyspace project.

• Mapped to std library: You map the function to a standard library function by using the
option -code-behavior-specifications. For more information on analysis options, see
the documentation for Polyspace Bug Finder or Polyspace Bug Finder Server.

1 Interpret Polyspace Bug Finder Results

1-20

Configuration Settings
The Configuration Settings pane displays all the analysis options that were passed to the Polyspace
analysis engine to generate the currently selected findings. These options include the options that the
user specifies and the options that are enabled by default.

You open the Configuration Settings pane by going to Layout > Show/Hide View.

 Configuration Settings

1-21

1 Interpret Polyspace Bug Finder Results

1-22

Click Checkers configuration to see which checkers are enabled for:

• “Defects”.
• “Coding Standards”, for instance MISRA C: 2012.
• “Custom Coding Rules”.

The Checkers configuration is not available for a Code Prover project if no coding standard or
custom coding rules are enabled.

 Configuration Settings

1-23

Result Details
The Result Details pane contains comprehensive information about a specific defect. To see this
information, on the Results List pane, select the defect.

• The top right corner shows the file and function containing the defect, in the format file_name/
function_name.

• The yellow box contains the name of the defect with an explanation of why the defect occurs.

The button allows you to access documentation for the defect. When available, click the
icon to see fix suggestions for the defect.

On this pane, you can also:

• Assign a Severity and Status to each check, and enter comments to describe the results of your
review.

• Assign a reviewer to the result. A reviewer can filter the Results List to only show results that are
assigned to him or her.

• Create a ticket in a bug tracking tool such as JIRA. Once you create the ticket the Results Details
for this defect shows a clickable link to the ticket you created.

• View the event traceback.

The Event column lists the sequence of code instructions causing the defect. The Scope column
lists the function containing the instructions. If the instructions are not in a function, the column
lists the file containing the instructions.

1 Interpret Polyspace Bug Finder Results

1-24

The Variable trace check box allows you to see an additional set of instructions that are related
to the defect.

• Click the icon to open the “Call Hierarchy” on page 1-19.
•

Click the icon to open the:

• Error Call Graph if the selected finding is a Run-time Check.

The pane displays the call sequence that leads to the detected finding. Click a node on the
graph to navigate back to the source code.

• Variable Access Graph if the selected finding is a Global variable.

The pane displays a graphical representation of the access operations on global variables.
Click a node on the graph to navigate back to the source code at the location of calling and
called functions.

See Also

More About
• “Address Results in Polyspace Access Through Bug Fixes or Justifications” on page 2-2
• “Review History” on page 1-28

 Result Details

1-25

Results List
The Results List pane lists all results along with their attributes.

For each result, the Results List pane contains the result attributes, listed in columns:

Attribute Description
Family Group to which the result belongs.
ID Unique identification number of the result.
Type Defect or coding rule violation.
Group Category of the result, for instance:

• For defects: Groups such as static memory, numerical, control flow,
concurrency, etc.

• For coding rule violations: Groups defined by the coding rule standard.

For instance, MISRA C: 2012 defines groups related to code constructs
such as functions, pointers and arrays, etc.

Check Result name, for instance:

• For defects: Defect name
• For coding rule violations: Coding rule number

Information Result sub-type when available.

• For defects: Impact classification.

For coding standards: required or mandatory, rule or recommendation.
Detail Additional information about a result. The column shows the first line of

the Result Details pane.

For an example of how to use this column, see the result MISRA C:2012
Dir 1.1.

File File containing the instruction where the result occurs
Function Function containing the instruction where the result occurs. If the

function is a method of a class, it appears in the format
class_name::function_name.

Status Review status you have assigned to the result. The possible statuses are:

• Unreviewed (default status)
• To investigate
• To fix
• Justified
• No action planned
• Not a defect
• Other

1 Interpret Polyspace Bug Finder Results

1-26

Attribute Description
Severity Level of severity you have assigned to the result. The possible levels are:

• Unset
• High
• Medium
• Low

Assigned to User name of reviewer assigned to this result.
Ticket Key When you create a bug tracking tool (BTT) ticket for a result, this field

contains the ticket ID. Click the ticket ID in the Results Details to open
the ticket in the BTT interface.

Comments Comments you have entered about the result
Folder Path to the folder that contains the source file with the result

To show or hide any of the columns, click the icon in the upper-right of the Results List pane,
then select or clear the title of the column that you want to show or hide.

Using this pane, you can:

• Navigate through the results.
• Organize your result review using filters in the toolstrip or in the context menu. For more

information, see “Filter and Sort Results in Polyspace Access Web Interface” on page 3-2.
• Right-click a result to get the URL of the result. When you open this URL in a web browser you get

see the Results List pane filtered to that one result.

If the Results List exceeds 10000 findings, Polyspace Access truncates the list and displays this icon
 in the filters bar. To show all findings, see the contextual help of the icon.

The 10000 findings limit is preset and cannot be changed.

 Results List

1-27

Review History
The Review History pane displays changes to the Status, Severity, or Comment for a finding. For
each change to these review fields, you see a separate row with:

• The date and time of the change.
• The user name of the user who made the change.
• The review field that changed, for instance Severity.
• The original value of the review field.
• The new value of the review field.

All the changes that you make to the review fields of findings in the Polyspace desktop interface are
shown in a single row after you upload these findings to Polyspace Access. The Review History pane
does not display the user name of the user who made these changes.

You open the Review History pane by going to Layout > Show/Hide View.

You can display changes for all the review fields, or you can filter for changes by Status, Severity,
and Comment.

1 Interpret Polyspace Bug Finder Results

1-28

See Also

More About
• “Address Results in Polyspace Access Through Bug Fixes or Justifications” on page 2-2
• “Result Details” on page 1-24

 Review History

1-29

Source Code
The Source Code pane shows the source code with the defects colored in red.

Tooltips
Placing your cursor over a result displays a tooltip that provides range information for variables,
operands, function parameters, and return values.

1 Interpret Polyspace Bug Finder Results

1-30

Examine Source Code
On the Source Code pane, if you right-click a text string, the context menu provides options to
examine your code:

For example, if you right-click the variable, you can use the following options to examine and navigate
through your code:

• Search For All References — List all references in the Code Search pane. The software
supports this feature for global and local variables, functions, types, and classes.

• Go To Definition — Go to the line of code that contains the definition of i. The software supports
this feature for global and local variables, functions, types, and classes. If a definition is not
available to Polyspace, selecting the option takes you to the declaration.

• Select Results –– Show more information about the selected result in the Results Details pane
and pin the result in the Source Code pane.

After you navigate away from the current result, use the icon on the Result Details pane to
come back.

• Go To Line — Open the Go to line dialog box. If you specify a line number and click Enter, the
software displays the specified line of code.

To search for instances of your selection in the Current Source File or in All Source Files, double-
click your selection before you right-click.

Expand Macros
You can view the contents of source code macros in the source code view. A code information bar
displays icons that identify source code lines with macros.

 Source Code

1-31

When you click this icon, the software displays the contents of macros on the next line.

To display the normal source code again, click the icon again.

Note

1 The Result Details pane also allows you to view the contents of a macro if the check you select
lies within a macro.

2 You cannot expand OSEK API macros in the Source Code pane.

View Code Block
On the Source Code pane, to highlight a block of code, click either its opening or closing brace. If
the brace itself is highlighted, click the brace twice.

1 Interpret Polyspace Bug Finder Results

1-32

Navigate from Code to Model
If you run Polyspace on generated code in Simulink® and upload the results to Polyspace Access, you
can navigate from the source code in Polyspace Access to blocks in the model.

On the Source Code pane in the Polyspace Access web interface, links in code comments show
blocks that generate the subsequent lines of code. To see the block in the model:

• Right-click a link and select Copy MATLAB Command to Highlight Block.

 Source Code

1-33

This action copies the MATLAB® command required to highlight the block. The command uses the
Simulink.ID.hilite function.

• In MATLAB editor, paste and run the copied command with the model open.

1 Interpret Polyspace Bug Finder Results

1-34

Track Issue in Bug Tracking Tool
If you use a bug tracking tool (BTT) such as Jira Software or Redmine as part of your software
development process, you can configure Polyspace Access to create BTT tickets for Polyspace
findings and add those tickets to the relevant project in your BTT software. See “Configure Issue
Tracker”.

Create a Ticket
To create a BTT ticket, select one or more findings in the Results list and, from the Results Details

pane, click in Polyspace Access or Create ticket in the Polyspace desktop interface. To select
multiple findings, press CTRL and click the findings.

Note In the desktop interface, you can create a BTT ticket only for results that you open from
Polyspace Access.

If you use Jira, you may be prompted to enter your credentials. These credentials might be different
from your Polyspace Access credentials.

After you create a BTT ticket, click the link in the Results Details pane to open the ticket in the BTT
interface and track the progress in resolving the issue. For each finding that you selected when you
created the ticket, the Description field of the ticket includes a URL to the Polyspace Access Results
List filtered down to that finding.

 Track Issue in Bug Tracking Tool

1-35

Manage Existing Tickets
Once you create a BTT ticket, you can attach the ticket to additional findings or detach the ticket
from findings associated with the ticket. To attach a ticket to additional findings:

1
Select findings in the Results List and then click in the Result Details.

2 When prompted, enter the ticket ID in the dialogue window.

Click the copy icon in the Result Details pane of a finding already associated with the ticket to
copy the ticket ID. The copy icon is not available when you select multiple findings with
different ticket IDs. The ticket ID is also available in the Ticket Key column of the Results List.

3 Click the copy icon in the dialogue window to copy the findings URL, then click Save.
4 Click the ticket URL in the Result Details to open the ticket in the BTT interface and paste the

findings URL you copied into the ticket description field.

You cannot attach more than one ticket to a finding. If a finding is already associated with a ticket,
attaching a new ticket overwrites the existing ticket ID. This operation does not overwrite the ticket
in your BTT. You can see all findings associated with a ticket ID by using the Show only text filter in
the toolstrip.

To detach a ticket from a finding, select the finding in the Results List, then click in the Result
Details. The link to the ticket is removed from the Result Details pane. This operation does not
remove the ticket in your BTT.

1 Interpret Polyspace Bug Finder Results

1-36

Note You cannot manage existing BBT tickets in the Polyspace desktop interface.

 Track Issue in Bug Tracking Tool

1-37

Bug Finder Quality Objectives
The Bug Finder Quality Objectives or BF-QOs are a set of thresholds against which you can compare
your Bug Finder analysis results. These objectives are adapted from the Polyspace Code Prover™
“Software Quality Objectives” (Polyspace Code Prover Access). You can develop a review process
based on the Quality Objectives.

You can use a predefined BF-QO level or define your own. To customize BF-QO lelvels, see “Customize
Software Quality Objectives” on page 1-15.

Following are the predefined quality thresholds specified by each BF-QO.

BF-QO Level 1

Metric Threshold Value
Comment density of a file 20
Number of paths through a function 80
Number of goto statements 0
Cyclomatic complexity 10
Number of calling functions 5
Number of calls 7
Number of parameters per function 5
Number of instructions per function 50
Number of call levels in a function 4
Number of return statements in a function 1
Language scope, an indicator of the cost of maintaining or changing
functions. Calculated as follows:
(N1+N2) / (n1+n2)

• n1 — Number of different operators
• N1 — Total number of operators
• n2 — Number of different operands
• N2 — Total number of operands

4

Number of recursions 0
Number of direct recursions 0

1 Interpret Polyspace Bug Finder Results

1-38

Metric Threshold Value
Number of unjustified violations of the following MISRA C:2004 rules:

• 5.2
• 8.11, 8.12
• 11.2, 11.3
• 12.12
• 13.3, 13.4, 13.5
• 14.4, 14.7
• 16.1, 16.2, 16.7
• 17.3, 17.4, 17.5, 17.6
• 18.4
• 20.4

0

Number of unjustified violations of the following MISRA C:2012 rules:

• 8.8, 8.11, and 8.13
• 11.1, 11.2, 11.4, 11.5, 11.6, and 11.7
• 14.1 and 14.2
• 15.1, 15.2, 15.3, and 15.5
• 17.1 and 17.2
• 18.3, 18.4, 18.5, and 18.6
• 19.2
• 21.3

0

Number of unjustified violations of the following MISRA® C++ rules:

• 2-10-2
• 3-1-3, 3-3-2, 3-9-3
• 5-0-15, 5-0-18, 5-0-19, 5-2-8, 5-2-9
• 6-2-2, 6-5-1, 6-5-2, 6-5-3, 6-5-4, 6-6-1, 6-6-2, 6-6-4, 6-6-5
• 7-5-1, 7-5-2, 7-5-4
• 8-4-1
• 9-5-1
• 10-1-2, 10-1-3, 10-3-1, 10-3-2, 10-3-3
• 15-0-3, 15-1-3, 15-3-3, 15-3-5, 15-3-6, 15-3-7, 15-4-1, 15-5-1, 15-5-2
• 18-4-1

0

BF-QO Level 2 and 3

In addition to all the requirements of BF-QO Level 1, these levels includes the following
thresholds:

 Bug Finder Quality Objectives

1-39

Metric Threshold Value
Number of “High Impact Defects” on page 3-11 0

BF-QO Level 4

In addition to all the requirements of BF-QO Level 2 and 3, this level includes the following
thresholds:

Metric Threshold Value
Number of “Medium Impact Defects” on page 3-14 0

BF-QO Level 5

In addition to all the requirements of BF-QO Level 4, this level includes the following
thresholds:

Metric Threshold Value
Number of unjustified violations of the following MISRA C:2004 rules:

• 6.3
• 8.7
• 9.2, 9.3
• 10.3, 10.5
• 11.1, 11.5
• 12.1, 12.2, 12.5, 12.6, 12.9, 12.10
• 13.1, 13.2, 13.6
• 14.8, 14.10
• 15.3
• 16.3, 16.8, 16.9
• 19.4, 19.9, 19.10, 19.11, 19.12
• 20.3

0

Number of unjustified violations of the following MISRA C:2012 rules:

• 11.8
• 12.1 and 12.3
• 13.2 and 13.4
• 14.4
• 15.6 and 15.7
• 16.4 and 16.5
• 17.4
• 20.4, 20.6, 20.7, 20.9, and 20.11

0

1 Interpret Polyspace Bug Finder Results

1-40

Metric Threshold Value
Number of unjustified violations of the following MISRA C++ rules:

• 3-4-1, 3-9-2
• 4-5-1
• 5-0-1, 5-0-2, 5-0-7, 5-0-8, 5-0-9, 5-0-10, 5-0-13, 5-2-1, 5-2-2, 5-2-7,

5-2-11, 5-3-3, 5-2-5, 5-2-6, 5-3-2, 5-18-1
• 6-2-1, 6-3-1, 6-4-2, 6-4-6, 6-5-3
• 8-4-3, 8-4-4, 8-5-2, 8-5-3
• 11-0-1
• 12-1-1, 12-8-2
• 16-0-5, 16-0-6, 16-0-7, 16-2-2, 16-3-1

0

BF-QO Level 6

In addition to all the requirements of BF-QO Level 5, this level includes the following
thresholds:

Metric Threshold Value
Number of “Low Impact Defects” on page 3-18 0

BF-QO Exhaustive

In addition to all the requirements of BF-QO Level 6, this level includes the following thresholds.
The thresholds for coding rule violations apply only if you check for coding rule violations.

Metric Threshold Value
Number of unjustified MISRA C and MISRA C++ coding rule violations 0
Number of unjustified defects 0

Comparing Analysis Results Against Quality Objectives
You can compare your analysis results against SQOs either in the Polyspace Access web interface or
the Polyspace user interface.

• In the Polyspace Access web interface, you can first determine whether your project fails to attain
a certain Quality Objective threshold by looking at the Quality Objectives card on the Project
Overview dashboard.

 Bug Finder Quality Objectives

1-41

The card shows the percentage of results that you have already fixed or justified in order to attain
the threshold. Click the number of remaining findings to open those findings in the Results List.
For a more detailed view of the quality of your code against all quality objectives thresholds, open
the Quality Objectives dashboard. For more information, see the “Quality Objectives Dashboard”
on page 1-14.

You can also generated reports that show the PASS or FAIL status using the templates
SoftwareQualityObjectives_Summary and SoftwareQualityObjectives. See Bug
Finder and Code Prover report (-report-template).

• In the Polyspace user interface, you can use the menu in the Results List toolbar to display only
those results that you must fix or justify to attain a certain Software Quality Objective.

To activate the SQO options in this menu, select Tools > Preferences. On the Review Scope tab,
select Include Quality Objectives Scope.

See Also

Related Examples
• “Filter and Sort Results in Polyspace Access Web Interface” on page 3-2
• “Address Results in Polyspace Access Through Bug Fixes or Justifications” on page 2-2

1 Interpret Polyspace Bug Finder Results

1-42

Software Quality Objective Subsets (C:2004)
In this section...
“Rules in SQO-Subset1” on page 1-43
“Rules in SQO-Subset2” on page 1-44

Rules in SQO-Subset1
In Polyspace Code Prover, the following set of coding rules will typically reduce the number of
unproven results.

Rule number Description
5.2 Identifiers in an inner scope shall not use the same name as an identifier in an

outer scope, and therefore hide that identifier.
8.11 The static storage class specifier shall be used in definitions and declarations of

objects and functions that have internal linkage.
8.12 When an array is declared with external linkage, its size shall be stated

explicitly or defined implicitly by initialization.
11.2 Conversion shall not be performed between a pointer to an object and any type

other than an integral type, another pointer to a object type or a pointer to void.
11.3 A cast should not be performed between a pointer type and an integral type.
12.12 The underlying bit representations of floating-point values shall not be used.
13.3 Floating-point expressions shall not be tested for equality or inequality.
13.4 The controlling expression of a for statement shall not contain any objects of

floating type.
13.5 The three expressions of a for statement shall be concerned only with loop

control.
14.4 The goto statement shall not be used.
14.7 A function shall have a single point of exit at the end of the function.
16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
16.7 A pointer parameter in a function prototype should be declared as pointer to

const if the pointer is not used to modify the addressed object.
17.3 >, >=, <, <= shall not be applied to pointer types except where they point to

the same array.
17.4 Array indexing shall be the only allowed form of pointer arithmetic.
17.5 The declaration of objects should contain no more than 2 levels of pointer

indirection.
17.6 The address of an object with automatic storage shall not be assigned to an

object that may persist after the object has ceased to exist.
18.3 An area of memory shall not be reused for unrelated purposes.
18.4 Unions shall not be used.

 Software Quality Objective Subsets (C:2004)

1-43

Rule number Description
20.4 Dynamic heap memory allocation shall not be used.

Note Polyspace software does not check MISRA rule 18.3.

Rules in SQO-Subset2
Good design practices generally lead to less code complexity, which can reduce the number of
unproven results in Polyspace Code Prover. The following set of coding rules enforce good design
practices. The SQO-subset2 option checks the rules in SQO-subset1 and some additional rules.

Rule number Description
5.2 Identifiers in an inner scope shall not use the same name as an identifier in an

outer scope, and therefore hide that identifier.
6.3 typedefs that indicate size and signedness should be used in place of the basic

types
8.7 Objects shall be defined at block scope if they are only accessed from within a

single function
8.11 The static storage class specifier shall be used in definitions and declarations

of objects and functions that have internal linkage.
8.12 When an array is declared with external linkage, its size shall be stated

explicitly or defined implicitly by initialization.
9.2 Braces shall be used to indicate and match the structure in the nonzero

initialization of arrays and structures
9.3 In an enumerator list, the = construct shall not be used to explicitly initialize

members other than the first, unless all items are explicitly initialized
10.3 The value of a complex expression of integer type may only be cast to a type

that is narrower and of the same signedness as the underlying type of the
expression

10.5 Bitwise operations shall not be performed on signed integer types
11.1 Conversion shall not be performed between a pointer to a function and any

type other than an integral type
11.2 Conversion shall not be performed between a pointer to an object and any type

other than an integral type, another pointer to a object type or a pointer to
void.

11.3 A cast should not be performed between a pointer type and an integral type.
11.5 Type casting from any type to or from pointers shall not be used
12.1 Limited dependence should be placed on C's operator precedence rules in

expressions
12.2 The value of an expression shall be the same under any order of evaluation that

the standard permits
12.5 The operands of a logical && or || shall be primary-expressions

1 Interpret Polyspace Bug Finder Results

1-44

Rule number Description
12.6 Operands of logical operators (&&, || and !) should be effectively Boolean.

Expression that are effectively Boolean should not be used as operands to
operators other than (&&, || or !)

12.9 The unary minus operator shall not be applied to an expression whose
underlying type is unsigned

12.10 The comma operator shall not be used
12.12 The underlying bit representations of floating-point values shall not be used.
13.1 Assignment operators shall not be used in expressions that yield Boolean

values
13.2 Tests of a value against zero should be made explicit, unless the operand is

effectively Boolean
13.3 Floating-point expressions shall not be tested for equality or inequality.
13.4 The controlling expression of a for statement shall not contain any objects of

floating type.
13.5 The three expressions of a for statement shall be concerned only with loop

control.
13.6 Numeric variables being used within a “for” loop for iteration counting should

not be modified in the body of the loop
14.4 The goto statement shall not be used.
14.7 A function shall have a single point of exit at the end of the function.
14.8 The statement forming the body of a switch, while, do while or for statement

shall be a compound statement
14.10 All if else if constructs should contain a final else clause
15.3 The final clause of a switch statement shall be the default clause
16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
16.3 Identifiers shall be given for all of the parameters in a function prototype

declaration
16.7 A pointer parameter in a function prototype should be declared as pointer to

const if the pointer is not used to modify the addressed object.
16.8 All exit paths from a function with non-void return type shall have an explicit

return statement with an expression
16.9 A function identifier shall only be used with either a preceding &, or with a

parenthesized parameter list, which may be empty
17.3 >, >=, <, <= shall not be applied to pointer types except where they point to

the same array.
17.4 Array indexing shall be the only allowed form of pointer arithmetic.
17.5 The declaration of objects should contain no more than 2 levels of pointer

indirection.
17.6 The address of an object with automatic storage shall not be assigned to an

object that may persist after the object has ceased to exist.

 Software Quality Objective Subsets (C:2004)

1-45

Rule number Description
18.3 An area of memory shall not be reused for unrelated purposes.
18.4 Unions shall not be used.
19.4 C macros shall only expand to a braced initializer, a constant, a parenthesized

expression, a type qualifier, a storage class specifier, or a do-while-zero
construct

19.9 Arguments to a function-like macro shall not contain tokens that look like
preprocessing directives

19.10 In the definition of a function-like macro each instance of a parameter shall be
enclosed in parentheses unless it is used as the operand of # or ##

19.11 All macro identifiers in preprocessor directives shall be defined before use,
except in #ifdef and #ifndef preprocessor directives and the defined() operator

19.12 There shall be at most one occurrence of the # or ## preprocessor operators
in a single macro definition.

20.3 The validity of values passed to library functions shall be checked.
20.4 Dynamic heap memory allocation shall not be used.

Note Polyspace software does not check MISRA rule 20.3 directly.

However, you can check this rule by writing manual stubs that check the validity of values. For
example, the following code checks the validity of an input being greater than 1:

int my_system_library_call(int in) {assert (in>1); if random \
return -1 else return 0; }

See Also

More About
• “Interpret Bug Finder Results in Polyspace Access Web Interface” on page 1-2

1 Interpret Polyspace Bug Finder Results

1-46

Software Quality Objective Subsets (AC AGC)
In this section...
“Rules in SQO-Subset1” on page 1-47
“Rules in SQO-Subset2” on page 1-47

Rules in SQO-Subset1
In Polyspace Code Prover, the following set of coding rules will typically reduce the number of
unproven results.

Rule number Description
5.2 Identifiers in an inner scope shall not use the same name as an identifier in an

outer scope, and therefore hide that identifier.
8.11 The static storage class specifier shall be used in definitions and declarations

of objects and functions that have internal linkage.
8.12 When an array is declared with external linkage, its size shall be stated

explicitly or defined implicitly by initialization.
11.2 Conversion shall not be performed between a pointer to an object and any type

other than an integral type, another pointer to a object type or a pointer to
void.

11.3 A cast should not be performed between a pointer type and an integral type.
12.12 The underlying bit representations of floating-point values shall not be used.
14.7 A function shall have a single point of exit at the end of the function.
16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
17.3 >, >=, <, <= shall not be applied to pointer types except where they point to

the same array.
17.6 The address of an object with automatic storage shall not be assigned to an

object that may persist after the object has ceased to exist.
18.4 Unions shall not be used.

For more information about these rules, see MISRA AC AGC Guidelines for the Application of MISRA-
C:2004 in the Context of Automatic Code Generation.

Rules in SQO-Subset2
Good design practices generally lead to less code complexity, which can reduce the number of
unproven results in Polyspace Code Prover. The following set of coding rules enforce good design
practices. The SQO-subset2 option checks the rules in SQO-subset1 and some additional rules.

Rule number Description
5.2 Identifiers in an inner scope shall not use the same name as an identifier in an

outer scope, and therefore hide that identifier.

 Software Quality Objective Subsets (AC AGC)

1-47

Rule number Description
6.3 typedefs that indicate size and signedness should be used in place of the basic

types
8.7 Objects shall be defined at block scope if they are only accessed from within a

single function
8.11 The static storage class specifier shall be used in definitions and declarations

of objects and functions that have internal linkage.
8.12 When an array is declared with external linkage, its size shall be stated

explicitly or defined implicitly by initialization.
9.3 In an enumerator list, the = construct shall not be used to explicitly initialize

members other than the first, unless all items are explicitly initialized
11.1 Conversion shall not be performed between a pointer to a function and any

type other than an integral type
11.2 Conversion shall not be performed between a pointer to an object and any type

other than an integral type, another pointer to a object type or a pointer to
void.

11.3 A cast should not be performed between a pointer type and an integral type.
11.5 Type casting from any type to or from pointers shall not be used
12.2 The value of an expression shall be the same under any order of evaluation that

the standard permits
12.9 The unary minus operator shall not be applied to an expression whose

underlying type is unsigned
12.10 The comma operator shall not be used
12.12 The underlying bit representations of floating-point values shall not be used.
14.7 A function shall have a single point of exit at the end of the function.
16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
16.3 Identifiers shall be given for all of the parameters in a function prototype

declaration
16.8 All exit paths from a function with non-void return type shall have an explicit

return statement with an expression
16.9 A function identifier shall only be used with either a preceding &, or with a

parenthesized parameter list, which may be empty
17.3 >, >=, <, <= shall not be applied to pointer types except where they point to

the same array.
17.6 The address of an object with automatic storage shall not be assigned to an

object that may persist after the object has ceased to exist.
18.4 Unions shall not be used.
19.9 Arguments to a function-like macro shall not contain tokens that look like

preprocessing directives
19.10 In the definition of a function-like macro each instance of a parameter shall be

enclosed in parentheses unless it is used as the operand of # or ##

1 Interpret Polyspace Bug Finder Results

1-48

Rule number Description
19.11 All macro identifiers in preprocessor directives shall be defined before use,

except in #ifdef and #ifndef preprocessor directives and the defined() operator
19.12 There shall be at most one occurrence of the # or ## preprocessor operators

in a single macro definition.
20.3 The validity of values passed to library functions shall be checked.

Note Polyspace software does not check MISRA rule 20.3 directly.

However, you can check this rule by writing manual stubs that check the validity of values. For
example, the following code checks the validity of an input being greater than 1:

int my_system_library_call(int in) {assert (in>1); if random \
return -1 else return 0; }

For more information about these rules, see MISRA AC AGC Guidelines for the Application of MISRA-
C:2004 in the Context of Automatic Code Generation.

See Also

More About
• “Interpret Bug Finder Results in Polyspace Access Web Interface” on page 1-2

 Software Quality Objective Subsets (AC AGC)

1-49

Software Quality Objective Subsets (C:2012)
In this section...
“Guidelines in SQO-Subset1” on page 1-50
“Guidelines in SQO-Subset2” on page 1-51

These subsets of MISRA C:2012 guidelines can have a direct or indirect impact on the precision of
your Polyspace results. When you set up coding rules checking, you can select these subsets.

Guidelines in SQO-Subset1
The following set of MISRA C:2012 coding guidelines typically reduces the number of unproven
results in Polyspace Code Prover.

Rule Description
8.8 The static storage class specifier shall be used in all declarations of objects and

functions that have internal linkage
8.11 When an array with external linkage is declared, its size should be explicitly

specified
8.13 A pointer should point to a const-qualified type whenever possible
11.1 Conversions shall not be performed between a pointer to a function and any other

type
11.2 Conversions shall not be performed between a pointer to an incomplete type and

any other type
11.4 A conversion should not be performed between a pointer to object and an integer

type
11.5 A conversion should not be performed from pointer to void into pointer to object
11.6 A cast shall not be performed between pointer to void and an arithmetic type
11.7 A cast shall not be performed between pointer to object and a non-integer

arithmetic type
14.1 A loop counter shall not have essentially floating type
14.2 A for loop shall be well-formed
15.1 The goto statement should not be used
15.2 The goto statement shall jump to a label declared later in the same function
15.3 Any label referenced by a goto statement shall be declared in the same block, or

in any block enclosing the goto statement
15.5 A function should have a single point of exit at the end
17.1 The features of <starg.h> shall not be used
17.2 Functions shall not call themselves, either directly or indirectly
18.3 The relational operators >, >=, < and <= shall not be applied to objects of

pointer type except where they point into the same object
18.4 The +, -, += and -= operators should not be applied to an expression of pointer

type

1 Interpret Polyspace Bug Finder Results

1-50

Rule Description
18.5 Declarations should contain no more than two levels of pointer nesting
18.6 The address of an object with automatic storage shall not be copied to another

object that persists after the first object has ceased to exist
19.2 The union keyword should not be used
21.3 The memory allocation and deallocation functions of <stdlib.h> shall not be used

Guidelines in SQO-Subset2
Good design practices generally lead to less code complexity, which can reduce the number of
unproven results in Polyspace Code Prover. The following set of coding rules enforce good design
practices. The SQO-subset2 option checks the rules in SQO-subset1 and some additional rules.

Rule Description
8.8 The static storage class specifier shall be used in all declarations of objects and

functions that have internal linkage
8.11 When an array with external linkage is declared, its size should be explicitly

specified
8.13 A pointer should point to a const-qualified type whenever possible
11.1 Conversions shall not be performed between a pointer to a function and any other

type
11.2 Conversions shall not be performed between a pointer to an incomplete type and

any other type
11.4 A conversion should not be performed between a pointer to object and an integer

type
11.5 A conversion should not be performed from pointer to void into pointer to object
11.6 A cast shall not be performed between pointer to void and an arithmetic type
11.7 A cast shall not be performed between pointer to object and a non-integer

arithmetic type
11.8 A cast shall not remove any const or volatile qualification from the type pointed to

by a pointer
12.1 The precedence of operators within expressions should be made explicit
12.3 The comma operator should not be used
13.2 The value of an expression and its persistent side effects shall be the same under

all permitted evaluation orders
13.4 The result of an assignment operator should not be used
14.1 A loop counter shall not have essentially floating type
14.2 A for loop shall be well-formed
14.4 The controlling expression of an if statement and the controlling expression of an

iteration-statement shall have essentially Boolean type
15.1 The goto statement should not be used
15.2 The goto statement shall jump to a label declared later in the same function

 Software Quality Objective Subsets (C:2012)

1-51

Rule Description
15.3 Any label referenced by a goto statement shall be declared in the same block, or

in any block enclosing the goto statement
15.5 A function should have a single point of exit at the end
15.6 The body of an iteration- statement or a selection- statement shall be a compound-

statement
15.7 All if … else if constructs shall be terminated with an else statement
16.4 Every switch statement shall have a default label
16.5 A default label shall appear as either the first or the last switch label of a switch

statement
17.1 The features of <starg.h> shall not be used
17.2 Functions shall not call themselves, either directly or indirectly
17.4 All exit paths from a function with non-void return type shall have an explicit

return statement with an expression
18.3 The relational operators >, >=, < and <= shall not be applied to objects of

pointer type except where they point into the same object
18.4 The +, -, += and -= operators should not be applied to an expression of pointer

type
18.5 Declarations should contain no more than two levels of pointer nesting
18.6 The address of an object with automatic storage shall not be copied to another

object that persists after the first object has ceased to exist
19.2 The union keyword should not be used
20.4 A macro shall not be defined with the same name as a keyword
20.6 Tokens that look like a preprocessing directive shall not occur within a macro

argument
20.7 Expressions resulting from the expansion of macro parameters shall be enclosed

in parentheses
20.9 All identifiers used in the controlling expression of #if or #elif preprocessing

directives shall be #define'd before evaluation
20.11 A macro parameter immediately following a # operator shall not immediately be

followed by a ## operator
21.3 The memory allocation and deallocation functions of <stdlib.h> shall not be used

See Also

More About
• “Interpret Bug Finder Results in Polyspace Access Web Interface” on page 1-2

1 Interpret Polyspace Bug Finder Results

1-52

Avoid Violations of MISRA C 2012 Rules 8.x
MISRA C:2012 rules 8.1-8.14 enforce good coding practices surrounding declarations and definitions.
If you follow these practices, you are less likely to have conflicting declarations or to unintentionally
modify variables.

If you do not follow these practices during coding, your code might require major changes later to be
MISRA C-compliant. You might have too many MISRA C violations. Sometimes, in fixing a violation,
you might violate another rule. Instead, keep these rules in mind when coding. Use the MISRA
C:2012 checker to spot any issues that you might have missed.

• Explicitly specify all data types in declarations.

Avoid implicit data types like this declaration of k:

extern void foo (char c, const k);

Instead use:

extern void foo (char c, const int k);

That way, you do not violate MISRA C:2012 Rule 8.1.
• When declaring functions, provide names and data types for all parameters.

Avoid declarations without parameter names like these declarations:

extern int func(int);
extern int func2();

Instead use:

extern int func(int arg);
extern int func2(void);

That way, you do not violate MISRA C:2012 Rule 8.2.
• If you want to use an object or function in multiple files, declare the object or function

once in only one header file.

To use an object in multiple source files, declare it as extern in a header file. Include the header
file in all the source files where you need the object. In one of those source files, define the object.
For instance:

/* header.h */
extern int var;

/* file1.c */
#include "header.h"
/* Some usage of var */

/* file2.c */
#include "header.h"
int var=1;

To use a function in multiple source files, declare it in a header file. Include the header file in all
the source files where you need the function. In one of those source files, define the function.

 Avoid Violations of MISRA C 2012 Rules 8.x

1-53

That way, you do not violate MISRA C:2012 Rule 8.3, MISRA C:2012 Rule 8.4, MISRA
C:2012 Rule 8.5, or MISRA C:2012 Rule 8.6.

• If you want to use an object or function in one file only, declare and define the object or
function with the static specifier.

Make sure that you use the static specifier in all declarations and the definition. For instance,
this function func is meant to be used only in the current file:

static int func(void);
static int func(void){
}

That way, you do not violateMISRA C:2012 Rule 8.7 and MISRA C:2012 Rule 8.8.
• If you want to use an object in one function only, declare the object in the function body.

Avoid declaring the object outside the function.

For instance, if you use var in func only, do declare it outside the body of func:

int var;
void func(void) {
 var=1;
}

Instead use:

void func(void) {
 int var;
 var=1;
}

That way, you do not violate MISRA C:2012 Rule 8.7 and MISRA C:2012 Rule 8.9.
• If you want to inline a function, declare and define the function with the static
specifier.

Every time you add inline to a function definition, add static too:

static inline double func(int val);
static inline double func(int val) {
}

That way, you do not violate MISRA C:2012 Rule 8.10.
• When declaring arrays, explicitly specify their size.

Avoid implicit size specifications like this:

extern int32_t array[];

Instead use:

#define MAXSIZE 10
extern int32_t array[MAXSIZE];

That way, you do not violate MISRA C:2012 Rule 8.11.
• When declaring enumerations, try to avoid mixing implicit and explicit specifications.

1 Interpret Polyspace Bug Finder Results

1-54

Avoid mixing implicit and explicit specifications. You can specify the first enumeration constant
explicitly, but after that, use either implicit or explicit specifications. For instance, avoid this type
of mix:

enum color {red = 2, blue, green = 3, yellow};

Instead use:

enum color {red = 2, blue, green, yellow};

That way, you do not violate MISRA C:2012 Rule 8.12.
• When declaring pointers, point to a const-qualified type unless you want to use the

pointer to modify an object.

Point to a const-qualified type by default unless you intend to use the pointer for modifying the
pointed object. For instance, in this example, ptr is not used to modify the pointed object:

char last_char(const char * const ptr){
}

That way, you do not violate MISRA C:2012 Rule 8.13.

 Avoid Violations of MISRA C 2012 Rules 8.x

1-55

Software Quality Objective Subsets (C++)

In this section...
“SQO Subset 1 – Direct Impact on Selectivity” on page 1-56
“SQO Subset 2 – Indirect Impact on Selectivity” on page 1-57

SQO Subset 1 – Direct Impact on Selectivity
The following set of MISRA C++ coding rules will typically improve the number of unproven results
in Polyspace Code Prover.

MISRA C++ Rule Description
2-10-2 Identifiers declared in an inner scope shall not hide an identifier declared in an outer

scope.
3-1-3 When an array is declared, its size shall either be stated explicitly or defined implicitly

by initialization.
3-3-2 The One Definition Rule shall not be violated.
3-9-3 The underlying bit representations of floating-point values shall not be used.
5-0-15 Array indexing shall be the only form of pointer arithmetic.
5-0-18 >, >=, <, <= shall not be applied to objects of pointer type, except where they point to

the same array.
5-0-19 The declaration of objects shall contain no more than two levels of pointer indirection.
5-2-8 An object with integer type or pointer to void type shall not be converted to an object

with pointer type.
5-2-9 A cast should not convert a pointer type to an integral type.
6-2-2 Floating-point expressions shall not be directly or indirectly tested for equality or

inequality.
6-5-1 A for loop shall contain a single loop-counter which shall not have floating type.
6-5-2 If loop-counter is not modified by -- or ++, then, within condition, the loop-counter shall

only be used as an operand to <=, <, > or >=.
6-5-3 The loop-counter shall not be modified within condition or statement.
6-5-4 The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n remains

constant for the duration of the loop.
6-6-1 Any label referenced by a goto statement shall be declared in the same block, or in a

block enclosing the goto statement.
6-6-2 The goto statement shall jump to a label declared later in the same function body.
6-6-4 For any iteration statement there shall be no more than one break or goto statement

used for loop termination.
6-6-5 A function shall have a single point of exit at the end of the function.
7-5-1 A function shall not return a reference or a pointer to an automatic variable (including

parameters), defined within the function.

1 Interpret Polyspace Bug Finder Results

1-56

MISRA C++ Rule Description
7-5-2 The address of an object with automatic storage shall not be assigned to another object

that may persist after the first object has ceased to exist.
7-5-4 Functions should not call themselves, either directly or indirectly.
8-4-1 Functions shall not be defined using the ellipsis notation.
9-5-1 Unions shall not be used.
10-1-2 A base class shall only be declared virtual if it is used in a diamond hierarchy.
10-1-3 An accessible base class shall not be both virtual and nonvirtual in the same hierarchy.
10-3-1 There shall be no more than one definition of each virtual function on each path through

the inheritance hierarchy.
10-3-2 Each overriding virtual function shall be declared with the virtual keyword.
10-3-3 A virtual function shall only be overridden by a pure virtual function if it is itself

declared as pure virtual.
15-0-3 Control shall not be transferred into a try or catch block using a goto or a switch

statement.
15-1-3 An empty throw (throw;) shall only be used in the compound- statement of a catch

handler.
15-3-3 Handlers of a function-try-block implementation of a class constructor or destructor

shall not reference non-static members from this class or its bases.
15-3-5 A class type exception shall always be caught by reference.
15-3-6 Where multiple handlers are provided in a single try-catch statement or function-try-

block for a derived class and some or all of its bases, the handlers shall be ordered most-
derived to base class.

15-3-7 Where multiple handlers are provided in a single try-catch statement or function-try-
block, any ellipsis (catch-all) handler shall occur last.

15-4-1 If a function is declared with an exception-specification, then all declarations of the
same function (in other translation units) shall be declared with the same set of type-ids.

15-5-1 A class destructor shall not exit with an exception.
15-5-2 Where a function's declaration includes an exception-specification, the function shall

only be capable of throwing exceptions of the indicated type(s).
18-4-1 Dynamic heap memory allocation shall not be used.

SQO Subset 2 – Indirect Impact on Selectivity
Good design practices generally lead to less code complexity, which can improve the number of
unproven results in Polyspace Code Prover. The following set of coding rules may help to address
design issues in your code. The SQO-subset2 option checks the rules in SQO-subset1 and SQO-
subset2.

MISRA C++ Rule Description
2-10-2 Identifiers declared in an inner scope shall not hide an identifier declared in an outer

scope.

 Software Quality Objective Subsets (C++)

1-57

MISRA C++ Rule Description
3-1-3 When an array is declared, its size shall either be stated explicitly or defined implicitly

by initialization.
3-3-2 If a function has internal linkage then all re-declarations shall include the static storage

class specifier.
3-4-1 An identifier declared to be an object or type shall be defined in a block that minimizes

its visibility.
3-9-2 typedefs that indicate size and signedness should be used in place of the basic

numerical types.
3-9-3 The underlying bit representations of floating-point values shall not be used.
4-5-1 Expressions with type bool shall not be used as operands to built-in operators other

than the assignment operator =, the logical operators &&, ||, !, the equality operators
== and !=, the unary & operator, and the conditional operator.

5-0-1 The value of an expression shall be the same under any order of evaluation that the
standard permits.

5-0-2 Limited dependence should be placed on C++ operator precedence rules in
expressions.

5-0-7 There shall be no explicit floating-integral conversions of a cvalue expression.
5-0-8 An explicit integral or floating-point conversion shall not increase the size of the

underlying type of a cvalue expression.
5-0-9 An explicit integral conversion shall not change the signedness of the underlying type

of a cvalue expression.
5-0-10 If the bitwise operators ~ and << are applied to an operand with an underlying type of

unsigned char or unsigned short, the result shall be immediately cast to the underlying
type of the operand.

5-0-13 The condition of an if-statement and the condition of an iteration- statement shall have
type bool

5-0-15 Array indexing shall be the only form of pointer arithmetic.
5-0-18 >, >=, <, <= shall not be applied to objects of pointer type, except where they point to

the same array.
5-0-19 The declaration of objects shall contain no more than two levels of pointer indirection.
5-2-1 Each operand of a logical && or || shall be a postfix - expression.
5-2-2 A pointer to a virtual base class shall only be cast to a pointer to a derived class by

means of dynamic_cast.
5-2-5 A cast shall not remove any const or volatile qualification from the type of a pointer or

reference.
5-2-6 A cast shall not convert a pointer to a function to any other pointer type, including a

pointer to function type.
5-2-7 An object with pointer type shall not be converted to an unrelated pointer type, either

directly or indirectly.
5-2-8 An object with integer type or pointer to void type shall not be converted to an object

with pointer type.
5-2-9 A cast should not convert a pointer type to an integral type.

1 Interpret Polyspace Bug Finder Results

1-58

MISRA C++ Rule Description
5-2-11 The comma operator, && operator and the || operator shall not be overloaded.
5-3-2 The unary minus operator shall not be applied to an expression whose underlying type

is unsigned.
5-3-3 The unary & operator shall not be overloaded.
5-18-1 The comma operator shall not be used.
6-2-1 Assignment operators shall not be used in sub-expressions.
6-2-2 Floating-point expressions shall not be directly or indirectly tested for equality or

inequality.
6-3-1 The statement forming the body of a switch, while, do ... while or for statement shall be

a compound statement.
6-4-2 All if ... else if constructs shall be terminated with an else clause.
6-4-6 The final clause of a switch statement shall be the default-clause.
6-5-1 A for loop shall contain a single loop-counter which shall not have floating type.
6-5-2 If loop-counter is not modified by -- or ++, then, within condition, the loop-counter shall

only be used as an operand to <=, <, > or >=.
6-5-3 The loop-counter shall not be modified within condition or statement.
6-5-4 The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n remains

constant for the duration of the loop.
6-6-1 Any label referenced by a goto statement shall be declared in the same block, or in a

block enclosing the goto statement.
6-6-2 The goto statement shall jump to a label declared later in the same function body.
6-6-4 For any iteration statement there shall be no more than one break or goto statement

used for loop termination.
6-6-5 A function shall have a single point of exit at the end of the function.
7-5-1 A function shall not return a reference or a pointer to an automatic variable (including

parameters), defined within the function.
7-5-2 The address of an object with automatic storage shall not be assigned to another object

that may persist after the first object has ceased to exist.
7-5-4 Functions should not call themselves, either directly or indirectly.
8-4-1 Functions shall not be defined using the ellipsis notation.
8-4-3 All exit paths from a function with non- void return type shall have an explicit return

statement with an expression.
8-4-4 A function identifier shall either be used to call the function or it shall be preceded by

&.
8-5-2 Braces shall be used to indicate and match the structure in the non- zero initialization

of arrays and structures.
8-5-3 In an enumerator list, the = construct shall not be used to explicitly initialize members

other than the first, unless all items are explicitly initialized.
9-5-1 Unions shall not be used.
10-1-2 A base class shall only be declared virtual if it is used in a diamond hierarchy.

 Software Quality Objective Subsets (C++)

1-59

MISRA C++ Rule Description
10-1-3 An accessible base class shall not be both virtual and nonvirtual in the same hierarchy.
10-3-1 There shall be no more than one definition of each virtual function on each path

through the inheritance hierarchy.
10-3-2 Each overriding virtual function shall be declared with the virtual keyword.
10-3-3 A virtual function shall only be overridden by a pure virtual function if it is itself

declared as pure virtual.
11-0-1 Member data in non- POD class types shall be private.
12-1-1 An object's dynamic type shall not be used from the body of its constructor or

destructor.
12-8-2 The copy assignment operator shall be declared protected or private in an abstract

class.
15-0-3 Control shall not be transferred into a try or catch block using a goto or a switch

statement.
15-1-3 An empty throw (throw;) shall only be used in the compound- statement of a catch

handler.
15-3-3 Handlers of a function-try-block implementation of a class constructor or destructor

shall not reference non-static members from this class or its bases.
15-3-5 A class type exception shall always be caught by reference.
15-3-6 Where multiple handlers are provided in a single try-catch statement or function-try-

block for a derived class and some or all of its bases, the handlers shall be ordered
most-derived to base class.

15-3-7 Where multiple handlers are provided in a single try-catch statement or function-try-
block, any ellipsis (catch-all) handler shall occur last.

15-4-1 If a function is declared with an exception-specification, then all declarations of the
same function (in other translation units) shall be declared with the same set of type-
ids.

15-5-1 A class destructor shall not exit with an exception.
15-5-2 Where a function's declaration includes an exception-specification, the function shall

only be capable of throwing exceptions of the indicated type(s).
16-0-5 Arguments to a function-like macro shall not contain tokens that look like

preprocessing directives.
16-0-6 In the definition of a function-like macro, each instance of a parameter shall be

enclosed in parentheses, unless it is used as the operand of # or ##.
16-0-7 Undefined macro identifiers shall not be used in #if or #elif preprocessor directives,

except as operands to the defined operator.
16-2-2 C++ macros shall only be used for: include guards, type qualifiers, or storage class

specifiers.
16-3-1 There shall be at most one occurrence of the # or ## operators in a single macro

definition.
18-4-1 Dynamic heap memory allocation shall not be used.

1 Interpret Polyspace Bug Finder Results

1-60

See Also

More About
• “Interpret Bug Finder Results in Polyspace Access Web Interface” on page 1-2

 Software Quality Objective Subsets (C++)

1-61

Coding Rule Subsets Checked Early in Analysis
In the initial compilation phase of the analysis, Polyspace checks those coding rules that do not
require the run-time error detection part of the analysis. If you want only those rules checked, you
can perform a much quicker analysis.

The software provides two predefined subsets of rules that it checks earlier in the analysis. The
subsets are available with the options Check MISRA C:2004 (-misra2), Check MISRA AC AGC
(-misra-ac-agc), and Check MISRA C:2012 (-misra3). For more information on analysis
options, see the documentation for Polyspace Bug Finder or Polyspace Bug Finder Server.

Argument Purpose
single-unit-rules Check rules that apply only to single translation units.

If you detect only coding rule violations and select this subset, a Bug Finder
analysis stops after the compilation phase.

system-decidable-
rules

Check rules in the single-unit-rules subset and some rules that apply to
the collective set of program files. The additional rules are the less complex
rules that apply at the integration level. These rules can be checked only at
the integration level because the rules involve more than one translation
unit.

If you detect only coding rule violations and select this subset, a Bug Finder
analysis stops after the linking phase.

See also “Interpret Bug Finder Results in Polyspace Access Web Interface” on page 1-2.

MISRA C: 2004 and MISRA AC AGC Rules
The software checks the following rules early in the analysis. The rules that are checked at a system
level and appear only in the system-decidable-rules subset are indicated by an asterisk.

Environment

Rule Description
1.1* All code shall conform to ISO® 9899:1990 "Programming languages - C", amended and

corrected by ISO/IEC 9899/COR1:1995, ISO/IEC 9899/AMD1:1995, and ISO/IEC 9899/
COR2:1996.

Language Extensions

Rule Description
2.1 Assembly language shall be encapsulated and isolated.
2.2 Source code shall only use /* */ style comments.
2.3 The character sequence /* shall not be used within a comment.

Documentation

Rule Description
3.4 All uses of the #pragma directive shall be documented and explained.

1 Interpret Polyspace Bug Finder Results

1-62

Character Sets

Rule Description
4.1 Only those escape sequences which are defined in the ISO C standard shall be used.
4.2 Trigraphs shall not be used.

Identifiers

Rule Description
5.1* Identifiers (internal and external) shall not rely on the significance of more than 31

characters.
5.2 Identifiers in an inner scope shall not use the same name as an identifier in an outer

scope, and therefore hide that identifier.
5.3* A typedef name shall be a unique identifier.
5.4* A tag name shall be a unique identifier.
5.5* No object or function identifier with a static storage duration should be reused.
5.6* No identifier in one name space should have the same spelling as an identifier in another

name space, with the exception of structure and union member names.
5.7* No identifier name should be reused.

Types

Rule Description
6.1 The plain char type shall be used only for the storage and use of character values.
6.2 Signed and unsigned char type shall be used only for the storage and use of numeric

values.
6.3 typedefs that indicate size and signedness should be used in place of the basic types.
6.4 Bit fields shall only be defined to be of type unsigned int or signed int.
6.5 Bit fields of type signed int shall be at least 2 bits long.

Constants

Rule Description
7.1 Octal constants (other than zero) and octal escape sequences shall not be used.

 Coding Rule Subsets Checked Early in Analysis

1-63

Declarations and Definitions

Rule Description
8.1 Functions shall have prototype declarations and the prototype shall be visible at both the

function definition and call.
8.2 Whenever an object or function is declared or defined, its type shall be explicitly stated.
8.3 For each function parameter the type given in the declaration and definition shall be

identical, and the return types shall also be identical.
8.4* If objects or functions are declared more than once their types shall be compatible.
8.5 There shall be no definitions of objects or functions in a header file.
8.6 Functions shall always be declared at file scope.
8.7 Objects shall be defined at block scope if they are only accessed from within a single

function.
8.8* An external object or function shall be declared in one file and only one file.
8.9* An identifier with external linkage shall have exactly one external definition.
8.10* All declarations and definitions of objects or functions at file scope shall have internal

linkage unless external linkage is required.
8.11 The static storage class specifier shall be used in definitions and declarations of

objects and functions that have internal linkage
8.12 When an array is declared with external linkage, its size shall be stated explicitly or

defined implicitly by initialization.

Initialization

Rule Description
9.2 Braces shall be used to indicate and match the structure in the nonzero initialization of

arrays and structures.
9.3 In an enumerator list, the = construct shall not be used to explicitly initialize members

other than the first, unless all items are explicitly initialized.

1 Interpret Polyspace Bug Finder Results

1-64

Arithmetic Type Conversion

Rule Description
10.1 The value of an expression of integer type shall not be implicitly converted to a different

underlying type if:

• It is not a conversion to a wider integer type of the same signedness, or
• The expression is complex, or
• The expression is not constant and is a function argument, or
• The expression is not constant and is a return expression

10.2 The value of an expression of floating type shall not be implicitly converted to a different
type if

• It is not a conversion to a wider floating type, or
• The expression is complex, or
• The expression is a function argument, or
• The expression is a return expression

10.3 The value of a complex expression of integer type may only be cast to a type that is
narrower and of the same signedness as the underlying type of the expression.

10.4 The value of a complex expression of float type may only be cast to narrower floating
type.

10.5 If the bitwise operator ~ and << are applied to an operand of underlying type unsigned
char or unsigned short, the result shall be immediately cast to the underlying type of
the operand

10.6 The "U" suffix shall be applied to all constants of unsigned types.

Pointer Type Conversion

Rule Description
11.1 Conversion shall not be performed between a pointer to a function and any type other

than an integral type.
11.2 Conversion shall not be performed between a pointer to an object and any type other

than an integral type, another pointer to a object type or a pointer to void.
11.3 A cast should not be performed between a pointer type and an integral type.
11.4 A cast should not be performed between a pointer to object type and a different pointer

to object type.
11.5 A cast shall not be performed that removes any const or volatile qualification from

the type addressed by a pointer

 Coding Rule Subsets Checked Early in Analysis

1-65

Expressions

Rule Description
12.1 Limited dependence should be placed on C's operator precedence rules in expressions.
12.3 The sizeof operator should not be used on expressions that contain side effects.
12.5 The operands of a logical && or || shall be primary-expressions.
12.6 Operands of logical operators (&&, || and !) should be effectively Boolean. Expression

that are effectively Boolean should not be used as operands to operators other than (&&,
|| or !).

12.7 Bitwise operators shall not be applied to operands whose underlying type is signed.
12.9 The unary minus operator shall not be applied to an expression whose underlying type is

unsigned.
12.10 The comma operator shall not be used.
12.11 Evaluation of constant unsigned expression should not lead to wraparound.
12.12 The underlying bit representations of floating-point values shall not be used.
12.13 The increment (++) and decrement (--) operators should not be mixed with other

operators in an expression

Control Statement Expressions

Rule Description
13.1 Assignment operators shall not be used in expressions that yield Boolean values.
13.2 Tests of a value against zero should be made explicit, unless the operand is effectively

Boolean.
13.3 Floating-point expressions shall not be tested for equality or inequality.
13.4 The controlling expression of a for statement shall not contain any objects of floating

type.
13.5 The three expressions of a for statement shall be concerned only with loop control.
13.6 Numeric variables being used within a for loop for iteration counting should not be

modified in the body of the loop.

1 Interpret Polyspace Bug Finder Results

1-66

Control Flow

Rule Description
14.3 All non-null statements shall either

• have at least one side effect however executed, or
• cause control flow to change.

14.4 The goto statement shall not be used.
14.5 The continue statement shall not be used.
14.6 For any iteration statement, there shall be at most one break statement used for loop

termination.
14.7 A function shall have a single point of exit at the end of the function.
14.8 The statement forming the body of a switch, while, do while or for statement shall

be a compound statement.
14.9 An if (expression) construct shall be followed by a compound statement. The else

keyword shall be followed by either a compound statement, or another if statement.
14.10 All if else if constructs should contain a final else clause.

Switch Statements

Rule Description
15.0 Unreachable code is detected between switch statement and first case.
15.1 A switch label shall only be used when the most closely-enclosing compound statement

is the body of a switch statement
15.2 An unconditional break statement shall terminate every non-empty switch clause.
15.3 The final clause of a switch statement shall be the default clause.
15.4 A switch expression should not represent a value that is effectively Boolean.
15.5 Every switch statement shall have at least one case clause.

Functions

Rule Description
16.1 Functions shall not be defined with variable numbers of arguments.
16.3 Identifiers shall be given for all of the parameters in a function prototype declaration.
16.4* The identifiers used in the declaration and definition of a function shall be identical.
16.5 Functions with no parameters shall be declared with parameter type void.
16.6 The number of arguments passed to a function shall match the number of parameters.
16.8 All exit paths from a function with non-void return type shall have an explicit return

statement with an expression.
16.9 A function identifier shall only be used with either a preceding &, or with a parenthesized

parameter list, which may be empty.

 Coding Rule Subsets Checked Early in Analysis

1-67

Pointers and Arrays

Rule Description
17.4 Array indexing shall be the only allowed form of pointer arithmetic.
17.5 A type should not contain more than 2 levels of pointer indirection.

Structures and Unions

Rule Description
18.1 All structure or union types shall be complete at the end of a translation unit.
18.4 Unions shall not be used.

Preprocessing Directives

Rule Description
19.1 #include statements in a file shall only be preceded by other preprocessors directives

or comments.
19.2 Nonstandard characters should not occur in header file names in #include directives.
19.3 The #include directive shall be followed by either a <filename> or "filename" sequence.
19.4 C macros shall only expand to a braced initializer, a constant, a parenthesized expression,

a type qualifier, a storage class specifier, or a do-while-zero construct.
19.5 Macros shall not be #defined and #undefd within a block.
19.6 #undef shall not be used.
19.7 A function should be used in preference to a function like-macro.
19.8 A function-like macro shall not be invoked without all of its arguments.
19.9 Arguments to a function-like macro shall not contain tokens that look like preprocessing

directives.
19.10 In the definition of a function-like macro, each instance of a parameter shall be enclosed

in parentheses unless it is used as the operand of # or ##.
19.11 All macro identifiers in preprocessor directives shall be defined before use, except in

#ifdef and #ifndef preprocessor directives and the defined() operator.
19.12 There shall be at most one occurrence of the # or ## preprocessor operators in a single

macro definition.
19.13 The # and ## preprocessor operators should not be used.
19.14 The defined preprocessor operator shall only be used in one of the two standard forms.
19.15 Precautions shall be taken in order to prevent the contents of a header file being included

twice.
19.16 Preprocessing directives shall be syntactically meaningful even when excluded by the

preprocessor.
19.17 All #else, #elif and #endif preprocessor directives shall reside in the same file as the

#if or #ifdef directive to which they are related.

1 Interpret Polyspace Bug Finder Results

1-68

Standard Libraries

Rule Description
20.1 Reserved identifiers, macros and functions in the standard library, shall not be defined,

redefined or undefined.
20.2 The names of standard library macros, objects and functions shall not be reused.
20.4 Dynamic heap memory allocation shall not be used.
20.5 The error indicator errno shall not be used.
20.6 The macro offsetof, in library <stddef.h>, shall not be used.
20.7 The setjmp macro and the longjmp function shall not be used.
20.8 The signal handling facilities of <signal.h> shall not be used.
20.9 The input/output library <stdio.h> shall not be used in production code.
20.10 The library functions atof, atoi and atoll from library <stdlib.h> shall not be used.
20.11 The library functions abort, exit, getenv and system from library <stdlib.h> shall

not be used.
20.12 The time handling functions of library <time.h> shall not be used.

The rules that are checked at a system level and appear only in the system-decidable-rules
subset are indicated by an asterisk.

MISRA C: 2012 Rules
The software checks the following rules early in the analysis. The rules that are checked at a system
level and appear only in the system-decidable-rules subset are indicated by an asterisk.

Standard C Environment

Rule Description
1.1 The program shall contain no violations of the standard C syntax and constraints, and

shall not exceed the implementation's translation limits.
1.2 Language extensions should not be used.

Unused Code

Rule Description
2.3* A project should not contain unused type declarations.
2.4* A project should not contain unused tag declarations.
2.5* A project should not contain unused macro declarations.
2.6 A function should not contain unused label declarations.
2.7 There should be no unused parameters in functions.

 Coding Rule Subsets Checked Early in Analysis

1-69

Comments

Rule Description
3.1 The character sequences /* and // shall not be used within a comment.
3.2 Line-splicing shall not be used in // comments.

Character Sets and Lexical Conventions

Rule Description
4.1 Octal and hexadecimal escape sequences shall be terminated.
4.2 Trigraphs should not be used.

Identifiers

Rule Description
5.1* External identifiers shall be distinct.
5.2 Identifiers declared in the same scope and name space shall be distinct.
5.3 An identifier declared in an inner scope shall not hide an identifier declared in an outer

scope.
5.4 Macro identifiers shall be distinct.
5.5 Identifiers shall be distinct from macro names.
5.6* A typedef name shall be a unique identifier.
5.7* A tag name shall be a unique identifier.
5.8* Identifiers that define objects or functions with external linkage shall be unique.
5.9* Identifiers that define objects or functions with internal linkage should be unique.

Types

Rule Description
6.1 Bit-fields shall only be declared with an appropriate type.
6.2 Single-bit named bit fields shall not be of a signed type.

Literals and Constants

Rule Description
7.1 Octal constants shall not be used.
7.2 A "u" or "U" suffix shall be applied to all integer constants that are represented in an

unsigned type.
7.3 The lowercase character "l" shall not be used in a literal suffix.
7.4 A string literal shall not be assigned to an object unless the object's type is "pointer to

const-qualified char".

1 Interpret Polyspace Bug Finder Results

1-70

Declarations and Definitions

Rule Description
8.1 Types shall be explicitly specified.
8.2 Function types shall be in prototype form with named parameters.
8.3* All declarations of an object or function shall use the same names and type qualifiers.
8.4 A compatible declaration shall be visible when an object or function with external linkage

is defined.
8.5* An external object or function shall be declared once in one and only one file.
8.6* An identifier with external linkage shall have exactly one external definition.
8.7* Functions and objects should not be defined with external linkage if they are referenced

in only one translation unit.
8.8 The static storage class specifier shall be used in all declarations of objects and

functions that have internal linkage.
8.9* An object should be defined at block scope if its identifier only appears in a single

function.
8.10 An inline function shall be declared with the static storage class.
8.11 When an array with external linkage is declared, its size should be explicitly specified.
8.12 Within an enumerator list, the value of an implicitly-specified enumeration constant shall

be unique.
8.14 The restrict type qualifier shall not be used.

Initialization

Rule Description
9.2 The initializer for an aggregate or union shall be enclosed in braces.
9.3 Arrays shall not be partially initialized.
9.4 An element of an object shall not be initialized more than once.
9.5 Where designated initializers are used to initialize an array object the size of the array

shall be specified explicitly.

 Coding Rule Subsets Checked Early in Analysis

1-71

The Essential Type Model

Rule Description
10.1 Operands shall not be of an inappropriate essential type.
10.2 Expressions of essentially character type shall not be used inappropriately in addition

and subtraction operations.
10.3 The value of an expression shall not be assigned to an object with a narrower essential

type or of a different essential type category.
10.4 Both operands of an operator in which the usual arithmetic conversions are performed

shall have the same essential type category.
10.5 The value of an expression should not be cast to an inappropriate essential type.
10.6 The value of a composite expression shall not be assigned to an object with wider

essential type.
10.7 If a composite expression is used as one operand of an operator in which the usual

arithmetic conversions are performed then the other operand shall not have wider
essential type.

10.8 The value of a composite expression shall not be cast to a different essential type
category or a wider essential type.

Pointer Type Conversion

Rule Description
11.1 Conversions shall not be performed between a pointer to a function and any other type.
11.2 Conversions shall not be performed between a pointer to an incomplete type and any

other type.
11.3 A cast shall not be performed between a pointer to object type and a pointer to a

different object type.
11.4 A conversion should not be performed between a pointer to object and an integer type.
11.5 A conversion should not be performed from pointer to void into pointer to object.
11.6 A cast shall not be performed between pointer to void and an arithmetic type.
11.7 A cast shall not be performed between pointer to object and a non-integer arithmetic

type.
11.8 A cast shall not remove any const or volatile qualification from the type pointed to by a

pointer.
11.9 The macro NULL shall be the only permitted form of integer null pointer constant.

Expressions

Rule Description
12.1 The precedence of operators within expressions should be made explicit.
12.3 The comma operator should not be used.
12.4 Evaluation of constant expressions should not lead to unsigned integer wrap-around.

1 Interpret Polyspace Bug Finder Results

1-72

Side Effects

Rule Description
13.3 A full expression containing an increment (++) or decrement (--) operator should have

no other potential side effects other than that caused by the increment or decrement
operator.

13.4 The result of an assignment operator should not be used.
13.6 The operand of the sizeof operator shall not contain any expression which has potential

side effects.

Control Statement Expressions

Rule Description
14.4 The controlling expression of an if statement and the controlling expression of an

iteration-statement shall have essentially Boolean type.

Control Flow

Rule Description
15.1 The goto statement should not be used.
15.2 The goto statement shall jump to a label declared later in the same function.
15.3 Any label referenced by a goto statement shall be declared in the same block, or in any

block enclosing the goto statement.
15.4 There should be no more than one break or goto statement used to terminate any

iteration statement.
15.5 A function should have a single point of exit at the end
15.6 The body of an iteration-statement or a selection-statement shall be a compound

statement.
15.7 All if … else if constructs shall be terminated with an else statement.

Switch Statements

Rule Description
16.1 All switch statements shall be well-formed.
16.2 A switch label shall only be used when the most closely-enclosing compound statement

is the body of a switch statement.
16.3 An unconditional break statement shall terminate every switch-clause.
16.4 Every switch statement shall have a default label.
16.5 A default label shall appear as either the first or the last switch label of a switch

statement.
16.6 Every switch statement shall have at least two switch-clauses.
16.7 A switch-expression shall not have essentially Boolean type.

 Coding Rule Subsets Checked Early in Analysis

1-73

Functions

Rule Description
17.1 The features of <starg.h> shall not be used.
17.3 A function shall not be declared implicitly.
17.4 All exit paths from a function with non-void return type shall have an explicit return

statement with an expression.
17.6 The declaration of an array parameter shall not contain the static keyword between the

[].
17.7 The value returned by a function having non-void return type shall be used.

Pointers and Arrays

Rule Description
18.4 The +, -, += and -= operators should not be applied to an expression of pointer type.
18.5 Declarations should contain no more than two levels of pointer nesting.
18.7 Flexible array members shall not be declared.
18.8 Variable-length array types shall not be used.

Overlapping Storage

Rule Description
19.2 The union keyword should not be used.

1 Interpret Polyspace Bug Finder Results

1-74

Preprocessing Directives

Rule Description
20.1 #include directives should only be preceded by preprocessor directives or comments.
20.2 The ', ", or \ characters and the /* or // character sequences shall not occur in a

header file name.
20.3 The #include directive shall be followed by either a <filename> or \"filename\"

sequence.
20.4 A macro shall not be defined with the same name as a keyword.
20.5 #undef should not be used.
20.6 Tokens that look like a preprocessing directive shall not occur within a macro argument.
20.7 Expressions resulting from the expansion of macro parameters shall be enclosed in

parentheses.
20.8 The controlling expression of a #if or #elif preprocessing directive shall evaluate to 0

or 1.
20.9 All identifiers used in the controlling expression of #if or #elif preprocessing

directives shall be #define'd before evaluation.
20.10 The # and ## preprocessor operators should not be used.
20.11 A macro parameter immediately following a # operator shall not immediately be followed

by a ## operator.
20.12 A macro parameter used as an operand to the # or ## operators, which is itself subject to

further macro replacement, shall only be used as an operand to these operators.
20.13 A line whose first token is # shall be a valid preprocessing directive.
20.14 All #else, #elif and #endif preprocessor directives shall reside in the same file as the

#if, #ifdef or #ifndef directive to which they are related.

Standard Libraries

Rule Description
21.1 #define and #undef shall not be used on a reserved identifier or reserved macro name.
21.2 A reserved identifier or macro name shall not be declared.
21.3 The memory allocation and deallocation functions of <stdlib.h> shall not be used.
21.4 The standard header file <setjmp.h> shall not be used.
21.5 The standard header file <signal.h> shall not be used.
21.6 The Standard Library input/output functions shall not be used.
21.7 The atof, atoi, atol, and atoll functions of <stdlib.h> shall not be used.
21.8 The library functions abort, exit, getenv and system of <stdlib.h> shall not be

used.
21.9 The library functions bsearch and qsort of <stdlib.h> shall not be used.
21.10 The Standard Library time and date functions shall not be used.
21.11 The standard header file <tgmath.h> shall not be used.
21.12 The exception handling features of <fenv.h> should not be used.

 Coding Rule Subsets Checked Early in Analysis

1-75

The rules that are checked at a system level and appear only in the system-decidable-rules
subset are indicated by an asterisk.

See Also

More About
• “Interpret Bug Finder Results in Polyspace Access Web Interface” on page 1-2

1 Interpret Polyspace Bug Finder Results

1-76

HIS Code Complexity Metrics
The following list shows the Hersteller Initiative Software (HIS) standard metrics that Polyspace
evaluates. These metrics and the recommended limits for their values are part of a standard defined
by a major group of Original Equipment Manufacturers or OEMs.

Project
Polyspace evaluates the following HIS metrics at the project level.

Metric Recommended Upper Limit
Number of direct recursions 0
Number of recursions 0

File
Polyspace evaluates the HIS metric, comment density, at the file level. The recommended lower limit
is 20.

Function
Polyspace evaluates the following HIS metrics at the function level.

Metric Recommended Upper Limit
Cyclomatic complexity 10
Language scope 4
Number of call levels 4
Number of calling functions 5
Number of called functions 7
Number of function parameters 5
Number of goto statements 0
Number of instructions 50
Number of paths 80
Number of return statements 1

See Also

More About
• “Code Metrics”

 HIS Code Complexity Metrics

1-77

Fix or Comment Polyspace Results

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” on page 2-2
• “Hide Known or Acceptable Polyspace Results” on page 2-5
• “Short Names of Bug Finder Defect Checkers” on page 2-12
• “Short Names of Code Complexity Metrics” on page 2-26
• “Define Custom Annotation Format” on page 2-28
• “Annotation Description Full XML Template” on page 2-36

2

Address Results in Polyspace Access Through Bug Fixes or
Justifications

This topic describes how to add review information to Polyspace results in the Polyspace Access web
interface. For a similar workflow in the user interface of the Polyspace desktop products, see
“Address Polyspace Results Through Bug Fixes or Justifications” (Polyspace Bug Finder).

Once you understand the root cause of a Polyspace finding, you can fix your code. Otherwise, add
review information to your Polyspace results to fix the code later or to justify the result. You can use
the information to keep track of your review progress.

If you add review information to your results file, they carry over to the results of the next analysis on
the same project. If you add the same information as comments to your code (annotate), they carry
over to any subsequent analysis of the code, whether in the same project or not.

Add Review Information in Result Details pane

2 Fix or Comment Polyspace Results

2-2

Set the Status and Severity, and optionally enter notes with more explanations in the Result
Details pane. The status indicates your response to the Polyspace result. To create a custom Status,
see “Open Polyspace Access Results in a Desktop Interface”.

If you do not plan to fix your code in response to a result, assign one of the following statuses:

• Justified
• No Action Planned
• Not a Defect

Based on the status, Polyspace considers that you have given due consideration and justified that
result (retained the code despite the result).

To facilitate your review workflow, Polyspace Access also classifies analysis findings as:

• To Do, with a status of Unreviewed.
• In Progress, with a status of To fix, To investigate, or Other.
• Done, with a status of Justified, No action planned, or Not a defect.

In the DASHBOARD perspective, findings that are To Do or In Progress are considered as Open
Issues. If a Polyspace analysis of your code finds known or acceptable defects or coding rule
violations, you can remove the defects or violations from this list of Open Issues in subsequent
analyses by assigning one of the justified statuses outlined above.

Comment or Annotate in Code
If you enter code comments or annotations in a specific syntax, the software can read them and
populate the Severity, Status, and comment fields in the next analysis of the code. Open your source
code in an editor and enter the annotation on the same line as the result.

For the annotation syntax, see “Hide Known or Acceptable Polyspace Results” on page 2-5.

If you do not specify a status in your annotation, Polyspace assumes that you have set a status of No
Action Planned.

 Address Results in Polyspace Access Through Bug Fixes or Justifications

2-3

See Also

More About
• “Hide Known or Acceptable Polyspace Results” on page 2-5

2 Fix or Comment Polyspace Results

2-4

Hide Known or Acceptable Polyspace Results
If a Polyspace analysis of your code finds known or acceptable defects or coding rule violations, you
can suppress them in subsequent analyses. Add information to your results or code indicating that
you have reviewed the issues and that you do not intend to fix them.

Adding Polyspace-specific code annotations to a file ensures that the review information carries over
to all subsequent analysis of the file using a Polyspace product. The annotated line no longer shows
the known result even if the file is analyzed via another Polyspace project or using another Polyspace
product.

This topic focuses primarily on hiding results using code annotations. If you want to keep Polyspace
review information outside your code, see “Alternatives to Code Annotations” on page 2-10.

Note that you cannot hide the run-time errors detected with Code Prover from your source code even
with code annotations. However, like all other results, the review information associated with a run-
time error is extracted from the corresponding code annotation and shown with the result.

Review Workflow Using Code Annotations
Code annotations can facilitate your review by suppressing known results.

Polyspace Access Web Interface

If you assign a status of Justified, No action planned, or Not a defect to a result, the
Polyspace Access interface classifies the result as Done. Instead of assigning one of these statuses to
a result in the Polyspace Access interface, you can assign the status on the relevant line of code
through code annotations.

• If you assign a status and other review information in the Polyspace Access interface, the
information is associated with the Polyspace Access project and carries over to the next upload to
the project.

• If you assign a status and other review information through code annotations, the information is
associated with the file analyzed and carries over even when the file containing the result is part
of another project in Polyspace Access.

Add annotations by typing them directly in your code, in an editor or IDE for instance. See the
annotation syntax below. If you annotate a result in your code, you cannot edit the status, severity, or
comment fields associated with the result in the Polyspace Access interface.

• For the general review workflow in the Polyspace Access web interface, see “Address Results in
Polyspace Access Through Bug Fixes or Justifications” on page 2-2.

• For information on how to filter results marked as Done, see “Filter and Sort Results in Polyspace
Access Web Interface” on page 3-2.

Polyspace as You Code

In Polyspace as You Code, you can enter code annotations to suppress a result from subsequent runs.
Enter the annotations in one of these ways:

• If you code in an IDE with a Polyspace as You Code extension or plugin, use a menu option on the
line with the result to enter annotations. See options in:

 Hide Known or Acceptable Polyspace Results

2-5

• Visual Studio on page 6-4
• Visual Studio Code on page 6-8
• Eclipse on page 6-12

Note that the annotation entered in this way uses a minimal syntax and implicitly indicates a
status of No action planned. If you analyze the annotated file with another Polyspace product
such as Polyspace Bug Finder Server, a result annotated in Polyspace as You Code is displayed
with the status No action planned.

• If you code in an IDE that is not supported with a Polyspace as You Code plugin or extension,
directly type the annotation in your code. See the annotation syntax below.

You cannot enter review information such as status directly in a Polyspace as You Code result because
the results are overwritten in each run. You can either enter the information as code annotations or
use a Polyspace Access project with the review information as baseline for Polyspace as You Code
runs. The review information is picked up from the code annotations or baseline. For more
information on using a baseline, see “Baselining in Polyspace as You Code”.

Code Annotation Syntax
To add comments directly to your source file, use the Polyspace annotation syntax. The syntax is not
case sensitive, and has the following format. Both C style comments within /* */ and C++ style
comments starting with // are supported. The following syntax shows the minimal information
required in a code annotation.

• Annotation for current line of code (including within macros):

line of code; /* polyspace Family:Result_name */
• Annotation for current line of code and n following lines:

code; /* polyspace +n Family:Result_name */
• Annotation for block of code:

/* polyspace-begin Family:Result_name */
code;
/* polyspace-end Family:Result_name */

Annotations begin with the keyword polyspace and must include Family and Result_name field
values. You can optionally specify Status, Severity, and Comment field values.

polyspace Family:Result_name [Status:Severity] "Comment"

When you annotate a block of code, if subsequent annotations nested within that block of code apply
to the same Family and Result_name, the nested annotation is applied.

For example, in this code, the annotation on line 9 is applied instead of the block annotation, but the
block annotation is applied to the violation on line 7.

2 Fix or Comment Polyspace Results

2-6

1 /*polyspace-begin MISRA-C:14.9 [To fix:High] "Block annotation"*/
2 int main(void) /*polyspace MISRA-C:14.7 "Nested annotation applied"*/
3 {
4 int x = 1;
5 int y = x / 2;
6
7 if (y < 0) /* Block annotation is applied to this violation of MISRA-C:14.9*/
8 y++;
9 if (x > y) /*polyspace MISRA-C:14.9 [Justified:Low] "Nested annotation applied"*/
10 return x;
11 return x;
12 }
13 /*polyspace-end MISRA-C:14.9 [To fix:High] "Block annotation"*/

If you do not specify a status, Polyspace Access considers the result Done, and assigns the status No
action planned to the result.

To replace the different annotation fields with their allowed values, use the values in this table or see
the examples on page 2-9.

Field Allowed Value
Family Type of analysis result:

• DEFECT (Polyspace Bug Finder)
• RTE, for run-time checks (Polyspace Code Prover)
• CODE-METRICS, for function-level code complexity metrics
• VARIABLE, for global variables (Polyspace Code Prover)
• MISRA-C or MISRA2004 for MISRA C: 2004 rule violations
• MISRA-AC-AGC for violations of MISRA C:2004 rules applicable to

generated code
• MISRA-C3 or MISRA2012 for MISRA C: 2012 rule violations. The

annotation works even for the rules applicable to generated code.
• CERT-C for CERT® C coding standard violations
• CERT-CPP for CERT C++ coding standard violations
• ISO-17961 for ISO/IEC TS 17961 coding standard violations
• MISRA-CPP for MISRA C++ rule violations
• AUTOSAR-CPP14 for AUTOSAR C++14 rule violations
• JSF for JSF®++ rule violations
• CUSTOM for violations of custom coding rules

To specify all analysis results, use the asterisk character *:*.

 Hide Known or Acceptable Polyspace Results

2-7

Field Allowed Value
Result_name For DEFECT, use short names of checkers. See “Short Names of Bug

Finder Defect Checkers” on page 2-12.

For RTE, use short names of run-time checks. See “Short Names of Code
Prover Run-Time Checks” (Polyspace Code Prover Access).

For CODE-METRICS, use short names of code complexity metrics. See
“Short Names of Code Complexity Metrics” on page 2-26.

For VARIABLE, the only allowed value is the asterisk character " * ".

For coding standard violations, specify the rule number or numbers.

To specify all parts of a result name [MISRA2012:17.*] or all result
names in a family [DEFECT:*], use the asterisk character.

Status Text to indicate how you intend to address the error in your code. This
value populates the Status column in the Results List pane as:

• Unreviewed
• To investigate
• To fix
• Justified
• No action planned
• Not a defect
• Other

Polyspace Access removes results annotated with status Justified, No
action planned, or Not a defect from the list of Open Issues in
subsequent analyses.

Severity Text to indicate how critical you consider the error in your code. This
value populates the Severity column in the Results List pane as:

• Unset
• High
• Medium
• Low

Comment Additional text, such as a keyword or an explanation for the status and
severity. This value populates the Comment column in the Results List
pane.

The additional text can span more than one line in the code. When
showing this text in reports, leading and trailing spaces on a line are
merged into one space so that the entire text can be read as a single
paragraph.

2 Fix or Comment Polyspace Results

2-8

Code Annotation Syntax Examples
Annotate a Single Defect

Enter an annotation on the same line as the defect and specify the Family (DEFECT) and the
Result_name (INT_OVFL). When you do not specify a status, Polyspace assigns the status No
action planned and the result is considered Done in subsequent analyses.

int var = INT_MAX;
var++;/* polyspace DEFECT:INT_OVFL */

Annotate a Single Coding Standard Violation

Justify a coding standard violation, for instance, a CERT-C violation.

Enter an annotation on the same line as the violation and specify the Family (CERT-C) and the
Result_name (the rule number, for instance, STR31-C). Assign the status Justified, severity Low
and a comment.

code; /* polyspace CERT-C:STR31-C [Justified:Low] "Overflow cannot happen
 because of external constraints." */

Annotate All MISRA C: 2012 Violations Over Multiple Lines

Enter an annotation with +n between polyspace and the Family:Result_name entries. The
annotation applies to the same line and the n following lines.

This annotation applies to lines 4–7. The line count includes code, comments, and blank lines.

4. code ; // polyspace +3 MISRA2012:*
5. //comment
6.
7. code;
8. code;

Annotate All Code Metrics on Function

To annotate function-level code complexity metrics, in the function definition, enter an annotation on
the same line as the function name.

This annotation suppresses all code complexity metrics for function func:

char func(char param) { //polyspace CODE-METRICS:*
 ...
}

 Hide Known or Acceptable Polyspace Results

2-9

Specify Multiple Families in the Same Annotation

Enter each family separated by a space. This annotation applies to all MISRA C:2012 rules 17 and to
all run-time checks.

some code; /* polyspace MISRA2012:17.* RTE:* */

Specify Multiple Result Names in the Same Annotation

After you specify the Family (DEFECT), enter each Result_name separated by a comma.

system("rm ~/.config"); /* polyspace DEFECT:UNSAFE_SYSTEM_CALL,RETURN_NOT_CHECKED */

Add Explanatory Comments to Annotation

After you specify a Family and a Result_name, you can add a Comment with additional information
for your justification. You can provide a comment for all families and result names, or a comment for
each family or result name.

//Single comment

code; /* polyspace DEFECT:BAD_FREE MISRA2004:* "OK Defect and MISRA" */
//Multiple comments incorrect syntax:

code; /* polyspace DEFECT:* "OK defect" MISRA2004:5.2 "OK MISRA" */

//Multiple comments correct syntax:
code; /* polyspace DEFECT:* "OK defect" polyspace MISRA2004:5.2 "OK MISRA" */

In annotations, Polyspace ignores all text following double quotes. To specify additional
Family:Result_name, [Status:Severity] or Comment entries, you must reenter the keyword
polyspace after text in double quotes.

Set Status and Severity

You can specify allowed values on page 2-6 or enter custom values for status and severity.

//Set Status only
code; /* polyspace DEFECT:* [To fix] "some comment" */

//Set Status 'To fix' and Severity 'High'
code; /* polyspace VARIABLE:* [To fix: High] "some comment"*/

//Set custom status 'Assigned' and Severity 'Medium'
code; /* polyspace MISRA2012:12.* [Assigned: Medium] */

Alternatives to Code Annotations
If you want to keep Polyspace-specific information separate from your code but still hide known or
acceptable results, you can add review information to the Polyspace results, and import them into
later analysis results. There are several ways to import this information.

2 Fix or Comment Polyspace Results

2-10

• In the most common workflow involving Polyspace Access, the review information is automatically
imported. If you upload an analysis result to a project in the Polyspace Access web server, review
information from the last uploaded run is imported to the current upload.

• You can explicitly force an import using:

• The option -import-comments with commands such as polyspace-bug-finder-server or
polyspace-code-prover-server. See -import-comments.

• The polyspace-comments-import command. See polyspace-comments-import.

Using the polyspace-comments-import command allows you to import from more than one set
of results.

• You can use a Polyspace Access project as baseline for Polyspace as You Code runs. See
“Baselining in Polyspace as You Code”.

See Also

More About
• “Define Custom Annotation Format” on page 2-28
• “Short Names of Bug Finder Defect Checkers” on page 2-12
• “Short Names of Code Complexity Metrics” on page 2-26

 Hide Known or Acceptable Polyspace Results

2-11

Short Names of Bug Finder Defect Checkers
To justify defects through code annotations, use the command-line names, or short names, listed in
the following table.

You can also enable the detection of a specific defect by using its short name as argument of the -
checkers option. Instead of listing individual defects, you can also specify groups of defects by the
group name, for instance, numerical, data_flow, and so on. See analysis option Find defects
(-checkers) in the documentation for Polyspace Bug Finder or Polyspace Bug Finder Server.

Defect Command-line Name
*this not returned in copy
assignment operator

RETURN_NOT_REF_TO_THIS

A move operation may throw MOVE_OPERATION_MAY_THROW
Abnormal termination of exit
handler

EXIT_ABNORMAL_HANDLER

Absorption of float operand FLOAT_ABSORPTION
Accessing object with
temporary lifetime

TEMP_OBJECT_ACCESS

Alignment changed after
memory reallocation

ALIGNMENT_CHANGE

Alternating input and output
from a stream without flush
or positioning call

IO_INTERLEAVING

Ambiguous declaration syntax MOST_VEXING_PARSE
Arithmetic operation with
NULL pointer

NULL_PTR_ARITH

Array access out of bounds OUT_BOUND_ARRAY
Array access with tainted
index

TAINTED_ARRAY_INDEX

Assertion ASSERT
Asynchronously cancellable
thread

ASYNCHRONOUSLY_CANCELLABLE_THREAD

Atomic load and store
sequence not atomic

ATOMIC_VAR_SEQUENCE_NOT_ATOMIC

Atomic variable accessed
twice in an expression

ATOMIC_VAR_ACCESS_TWICE

Automatic or thread local
variable escaping from a
thread

LOCAL_ADDR_ESCAPE_THREAD

Bad file access mode or
status

BAD_FILE_ACCESS_MODE_STATUS

Bad order of dropping
privileges

BAD_PRIVILEGE_DROP_ORDER

2 Fix or Comment Polyspace Results

2-12

Defect Command-line Name
Base class assignment
operator not called

MISSING_BASE_ASSIGN_OP_CALL

Base class destructor not
virtual

DTOR_NOT_VIRTUAL

Bitwise and arithmetic
operation on the same data

BITWISE_ARITH_MIX

Bitwise operation on
negative value

BITWISE_NEG

Blocking operation while
holding lock

BLOCKING_WHILE_LOCKED

Buffer overflow from
incorrect string format
specifier

STR_FORMAT_BUFFER_OVERFLOW

Bytewise operations on
nontrivial class object

MEMOP_ON_NONTRIVIAL_OBJ

C++ reference to const-
qualified type with
subsequent modification

WRITE_REFERENCE_TO_CONST_TYPE

C++ reference type qualified
with const or volatile

CV_QUALIFIED_REFERENCE_TYPE

Call through non-prototyped
function pointer

UNPROTOTYPED_FUNC_CALL

Call to memset with
unintended value

MEMSET_INVALID_VALUE

Character value absorbed
into EOF

CHAR_EOF_CONFUSED

Closing a previously closed
resource

DOUBLE_RESOURCE_CLOSE

Code deactivated by constant
false condition

DEACTIVATED_CODE

Command executed from
externally controlled path

TAINTED_PATH_CMD

Const parameter values may
cause unnecessary data
copies

CONST_PARAMETER_VALUE

Const return values may
cause unnecessary data
copies

CONST_RETURN_VALUE

Const rvalue reference
parameter may cause
unnecessary data copies

CONST_RVALUE_REFERENCE_PARAMETER

 Short Names of Bug Finder Defect Checkers

2-13

Defect Command-line Name
Const std::move input may
cause a more expensive
object copy

EXPENSIVE_STD_MOVE_CONST_OBJECT

Constant block cipher
initialization vector

CRYPTO_CIPHER_CONSTANT_IV

Constant cipher key CRYPTO_CIPHER_CONSTANT_KEY
Context initialized
incorrectly for
cryptographic operation

CRYPTO_PKEY_INCORRECT_INIT

Context initialized
incorrectly for digest
operation

CRYPTO_MD_BAD_FUNCTION

Conversion or deletion of
incomplete class pointer

INCOMPLETE_CLASS_PTR

Copy constructor not called
in initialization list

MISSING_COPY_CTOR_CALL

Copy of overlapping memory OVERLAPPING_COPY
Copy operation modifying
source operand

COPY_MODIFYING_SOURCE

Data race DATA_RACE
Data race including atomic
operations

DATA_RACE_ALL

Data race on adjacent bit
fields

DATA_RACE_BIT_FIELDS

Data race through standard
library function call

DATA_RACE_STD_LIB

Dead code DEAD_CODE
Deadlock DEADLOCK
Deallocation of previously
deallocated pointer

DOUBLE_DEALLOCATION

Declaration mismatch DECL_MISMATCH
Delete of void pointer DELETE_OF_VOID_PTR
Destination buffer overflow
in string manipulation

STRLIB_BUFFER_OVERFLOW

Destination buffer underflow
in string manipulation

STRLIB_BUFFER_UNDERFLOW

Destruction of locked mutex DESTROY_LOCKED
Deterministic random output
from constant seed

RAND_SEED_CONSTANT

Double lock DOUBLE_LOCK
Double unlock DOUBLE_UNLOCK

2 Fix or Comment Polyspace Results

2-14

Defect Command-line Name
Empty destructors may cause
unnecessary data copies

EMPTY_DESTRUCTOR_DEFINED

Environment pointer
invalidated by previous
operation

INVALID_ENV_POINTER

Errno not checked ERRNO_NOT_CHECKED
Errno not reset MISSING_ERRNO_RESET
Exception caught by value EXCP_CAUGHT_BY_VALUE
Exception handler hidden by
previous handler

EXCP_HANDLER_HIDDEN

Execution of a binary from a
relative path can be
controlled by an external
actor

RELATIVE_PATH_CMD

Execution of externally
controlled command

TAINTED_EXTERNAL_CMD

Expensive c_str() to
std::string construction

EXPENSIVE_C_STR_STD_STRING_CONSTRUCTION

Expensive constant
std::string construction

EXPENSIVE_CONSTANT_STD_STRING

Expensive copy in a range-
based for loop iteration

EXPENSIVE_RANGE_BASED_FOR_LOOP_ITERATION

Expensive local variable
copy

EXPENSIVE_LOCAL_VARIABLE

Expensive logical operation EXPENSIVE_LOGICAL_OPERATION
Expensive pass by value EXPENSIVE_PASS_BY_VALUE
Expensive return by value EXPENSIVE_RETURN_BY_VALUE
Expensive use of non-member
std::string operator+()
instead of a simple append

EXPENSIVE_STD_STRING_APPEND

Expensive use of std::string
methods instead of more
efficient overload

EXPENSIVE_USE_OF_STD_STRING_METHODS

Expensive use of std::string
with empty string literal

UNNECESSARY_EMPTY_STRING_LITERAL

File access between time of
check and use (TOCTOU)

TOCTOU

File descriptor exposure to
child process

FILE_EXPOSURE_TO_CHILD

File does not compile file_does_not_compile
File manipulation after
chroot without chdir

CHROOT_MISUSE

 Short Names of Bug Finder Defect Checkers

2-15

Defect Command-line Name
Float conversion overflow FLOAT_CONV_OVFL
Float division by zero FLOAT_ZERO_DIV
Floating point comparison
with equality operators

BAD_FLOAT_OP

Float overflow FLOAT_OVFL
Format string specifiers and
arguments mismatch

STRING_FORMAT

Function called from signal
handler not asynchronous-
safe

SIG_HANDLER_ASYNC_UNSAFE

Function called from signal
handler not asynchronous-
safe (strict)

SIG_HANDLER_ASYNC_UNSAFE_STRICT

Function pointer assigned
with absolute address

FUNC_PTR_ABSOLUTE_ADDR

Function that can spuriously
fail not wrapped in loop

SPURIOUS_FAILURE_NOT_WRAPPED_IN_LOOP

Function that can spuriously
wake up not wrapped in loop

SPURIOUS_WAKEUP_NOT_WRAPPED_IN_LOOP

Hard-coded buffer size HARD_CODED_BUFFER_SIZE
Hard-coded loop boundary HARD_CODED_LOOP_BOUNDARY
Hard-coded object size used
to manipulate memory

HARD_CODED_MEM_SIZE

Hard-coded sensitive data HARD_CODED_SENSITIVE_DATA
Host change using externally
controlled elements

TAINTED_HOSTID

Improper array
initialization

IMPROPER_ARRAY_INIT

Inappropriate I/O operation
on device files

INAPPROPRIATE_IO_ON_DEVICE

Incompatible padding for RSA
algorithm operation

CRYPTO_RSA_BAD_PADDING

Incompatible types prevent
overriding

VIRTUAL_FUNC_HIDING

Inconsistent cipher
operations

CRYPTO_CIPHER_BAD_FUNCTION

Incorrect data type passed
to va_arg

VA_ARG_INCORRECT_TYPE

Incorrect key for
cryptographic algorithm

CRYPTO_PKEY_INCORRECT_KEY

Incorrect order of network
connection operations

BAD_NETWORK_CONNECT_ORDER

2 Fix or Comment Polyspace Results

2-16

Defect Command-line Name
Incorrect pointer scaling BAD_PTR_SCALING
Incorrect type data passed
to va_start

VA_START_INCORRECT_TYPE

Incorrect use of offsetof in
C++

OFFSETOF_MISUSE

Incorrect use of va_start VA_START_MISUSE
Incorrect syntax of flexible
array member size

FLEXIBLE_ARRAY_MEMBER_INCORRECT_SIZE

Incorrect value forwarding INCORRECT_VALUE_FORWARDING
Incorrectly indented
statement

INCORRECT_INDENTATION

Inefficient string length
computation

INEFFICIENT_BASIC_STRING_LENGTH

Information leak via
structure padding

PADDING_INFO_LEAK

Inline constraint not
respected

INLINE_CONSTRAINT_NOT_RESPECTED

Integer constant overflow INT_CONSTANT_OVFL
Integer conversion overflow INT_CONV_OVFL
Integer division by zero INT_ZERO_DIV
Integer overflow INT_OVFL
Integer precision exceeded INT_PRECISION_EXCEEDED
Invalid assumptions about
memory organization

INVALID_MEMORY_ASSUMPTION

Invalid deletion of pointer BAD_DELETE
Invalid file position INVALID_FILE_POS
Invalid free of pointer BAD_FREE
Invalid use of =
(assignment) operator

BAD_EQUAL_USE

Invalid use of == (equality)
operator

BAD_EQUAL_EQUAL_USE

Invalid use of standard
library floating point
routine

FLOAT_STD_LIB

Invalid use of standard
library integer routine

INT_STD_LIB

Invalid use of standard
library memory routine

MEM_STD_LIB

Invalid use of standard
library routine

OTHER_STD_LIB

 Short Names of Bug Finder Defect Checkers

2-17

Defect Command-line Name
Invalid use of standard
library string routine

STR_STD_LIB

Invalid va_list argument INVALID_VA_LIST_ARG
Join or detach of a joined
or detached thread

DOUBLE_JOIN_OR_DETACH

Lambda used as decltype or
typeid operand

LAMBDA_TYPE_MISUSE

Library loaded from
externally controlled path

TAINTED_PATH_LIB

Line with more than one
statement

MORE_THAN_ONE_STATEMENT

Load of library from a
relative path can be
controlled by an external
actor

RELATIVE_PATH_LIB

Loop bounded with tainted
value

TAINTED_LOOP_BOUNDARY

Macro terminated with a
semicolon

SEMICOLON_TERMINATED_MACRO

Macro with multiple
statements

MULTI_STMT_MACRO

Member not initialized in
constructor

NON_INIT_MEMBER

Memory allocation with
tainted size

TAINTED_MEMORY_ALLOC_SIZE

Memory comparison of float-
point values

MEMCMP_FLOAT

Memory comparison of padding
data

MEMCMP_PADDING_DATA

Memory comparison of strings MEMCMP_STRINGS
Memory leak MEM_LEAK
Mismatch between data length
and size

DATA_LENGTH_MISMATCH

Mismatched alloc/dealloc
functions on Windows

WIN_MISMATCH_DEALLOC

Missing blinding for RSA
algorithm

CRYPTO_RSA_NO_BLINDING

Missing block cipher
initialization vector

CRYPTO_CIPHER_NO_IV

Missing break of switch case MISSING_SWITCH_BREAK
Missing byte reordering when
transferring data

MISSING_BYTESWAP

2 Fix or Comment Polyspace Results

2-18

Defect Command-line Name
Missing case for switch
condition

MISSING_SWITCH_CASE

Missing certification
authority list

CRYPTO_SSL_NO_CA

Missing cipher algorithm CRYPTO_CIPHER_NO_ALGORITHM
Missing cipher data to
process

CRYPTO_CIPHER_NO_DATA

Missing cipher final step CRYPTO_CIPHER_NO_FINAL
Missing cipher key CRYPTO_CIPHER_NO_KEY
Missing constexpr specifier MISSING_CONSTEXPR
Missing data for encryption,
decryption or signing
operation

CRYPTO_PKEY_NO_DATA

Missing explicit keyword MISSING_EXPLICIT_KEYWORD
Missing final step after
hashing update operation

CRYPTO_MD_NO_FINAL

Missing hash algorithm CRYPTO_MD_NO_ALGORITHM
Missing lock BAD_UNLOCK
Missing null in string array MISSING_NULL_CHAR
Missing or double
initialization of thread
attribute

BAD_THREAD_ATTRIBUTE

Missing overload of
allocation or deallocation
function

MISSING_OVERLOAD_NEW_DELETE_PAIR

Missing padding for RSA
algorithm

CRYPTO_RSA_NO_PADDING

Missing parameters for key
generation

CRYPTO_PKEY_NO_PARAMS

Missing peer key CRYPTO_PKEY_NO_PEER
Missing private key CRYPTO_PKEY_NO_PRIVATE_KEY
Missing private key for
X.509 certificate

CRYPTO_SSL_NO_PRIVATE_KEY

Missing public key CRYPTO_PKEY_NO_PUBLIC_KEY
Missing reset of a freed
pointer

MISSING_FREED_PTR_RESET

Missing return statement MISSING_RETURN
Missing salt for hashing
operation

CRYPTO_MD_NO_SALT

Missing unlock BAD_LOCK
Missing virtual inheritance MISSING_VIRTUAL_INHERITANCE

 Short Names of Bug Finder Defect Checkers

2-19

Defect Command-line Name
Missing X.509 certificate CRYPTO_SSL_NO_CERTIFICATE
Misuse of a FILE object FILE_OBJECT_MISUSE
Misuse of errno ERRNO_MISUSE
Misuse of errno in a signal
handler

SIG_HANDLER_ERRNO_MISUSE

Misuse of narrow or wide
character string

NARROW_WIDE_STR_MISUSE

Misuse of readlink() READLINK_MISUSE
Misuse of return value from
nonreentrant standard
function

NON_REENTRANT_STD_RETURN

Misuse of sign-extended
character value

CHARACTER_MISUSE

Misuse of structure with
flexible array member

FLEXIBLE_ARRAY_MEMBER_STRUCT_MISUSE

Modification of internal
buffer returned from
nonreentrant standard
function

WRITE_INTERNAL_BUFFER_RETURNED_FROM_STD_FUNC

Move operation on const
object

MOVE_CONST_OBJECT

Multiple mutexes used with
same conditional variable

MULTI_MUTEX_WITH_ONE_COND_VAR

Multiple threads waiting on
same condition variable

SIGNALED_COND_VAR_NOT_UNIQUE

No data added into context CRYPTO_MD_NO_DATA
Noexcept function exits with
exception

NOEXCEPT_FUNCTION_THROWS

Non-compliance with AUTOSAR
specification

autosar_lib_non_compliance

Non-initialized pointer NON_INIT_PTR
Non-initialized variable NON_INIT_VAR
Nonsecure hash algorithm CRYPTO_MD_WEAK_HASH
Nonsecure parameters for key
generation

CRYPTO_PKEY_WEAK_PARAMS

Nonsecure RSA public
exponent

CRYPTO_RSA_LOW_EXPONENT

Nonsecure SSL/TLS protocol CRYPTO_SSL_WEAK_PROTOCOL
Null pointer NULL_PTR
Object slicing OBJECT_SLICING

2 Fix or Comment Polyspace Results

2-20

Defect Command-line Name
Opening previously opened
resource

DOUBLE_RESOURCE_OPEN

Operator new not overloaded
for possibly overaligned
class

MISSING_OVERLOAD_NEW_FOR_ALIGNED_OBJ

Overlapping assignment OVERLAPPING_ASSIGN
Partially accessed array PARTIALLY_ACCESSED_ARRAY
Partial override of
overloaded virtual functions

PARTIAL_OVERRIDE

Pointer access out of bounds OUT_BOUND_PTR
Pointer dereference with
tainted offset

TAINTED_PTR_OFFSET

Pointer or reference to
stack variable leaving scope

LOCAL_ADDR_ESCAPE

Pointer to non-initialized
value converted to const
pointer

NON_INIT_PTR_CONV

Possible invalid operation
on boolean operand

INVALID_OPERATION_ON_BOOLEAN

Possible misuse of sizeof SIZEOF_MISUSE
Possibly inappropriate data
type for switch expression

INAPPROPRIATE_TYPE_IN_SWITCH

Possibly unintended
evaluation of expression
because of operator
precedence rules

OPERATOR_PRECEDENCE

Precision loss in integer to
float conversion

INT_TO_FLOAT_PRECISION_LOSS

Predefined macro used as an
object

MACRO_USED_AS_OBJECT

Predictable block cipher
initialization vector

CRYPTO_CIPHER_PREDICTABLE_IV

Predictable cipher key CRYPTO_CIPHER_PREDICTABLE_KEY
Predictable random output
from predictable seed

RAND_SEED_PREDICTABLE

Preprocessor directive in
macro argument

PRE_DIRECTIVE_MACRO_ARG

Privilege drop not verified MISSING_PRIVILEGE_DROP_CHECK
Qualifier removed in
conversion

QUALIFIER_MISMATCH

Redundant expression in
sizeof operand

SIZEOF_USELESS_OP

 Short Names of Bug Finder Defect Checkers

2-21

Defect Command-line Name
Resource leak RESOURCE_LEAK
Returned value of a
sensitive function not
checked

RETURN_NOT_CHECKED

Return from computational
exception signal handler

SIG_HANDLER_COMP_EXCP_RETURN

Return of non const handle
to encapsulated data member

BREAKING_DATA_ENCAPSULATION

Self assignment not tested
in operator

MISSING_SELF_ASSIGN_TEST

Semicolon on same line as
if, for or while statement

SEMICOLON_CTRL_STMT_SAME_LINE

Sensitive data printed out SENSITIVE_DATA_PRINT
Sensitive heap memory not
cleared before release

SENSITIVE_HEAP_NOT_CLEARED

Server certificate common
name not checked

CRYPTO_SSL_HOSTNAME_NOT_CHECKED

Shared data access within
signal handler

SIG_HANDLER_SHARED_OBJECT

Shift of a negative value SHIFT_NEG
Shift operation overflow SHIFT_OVFL
Side effect in arguments to
unsafe macro

SIDE_EFFECT_IN_UNSAFE_MACRO_ARG

Side effect of expression
ignored

SIDE_EFFECT_IGNORED

Signal call from within
signal handler

SIG_HANDLER_CALLING_SIGNAL

Signal call in multithreaded
program

SIGNAL_USE_IN_MULTITHREADED_PROGRAM

Sign change integer
conversion overflow

SIGN_CHANGE

Standard function call with
incorrect arguments

STD_FUNC_ARG_MISMATCH

Static uncalled function UNCALLED_FUNC
std::endl may cause an
unnecessary flush

STD_ENDL_USE

std::move called on an
unmovable type

STD_MOVE_UNMOVABLE_TYPE

Stream argument with
possibly unintended side
effects

STREAM_WITH_SIDE_EFFECT

2 Fix or Comment Polyspace Results

2-22

Defect Command-line Name
Subtraction or comparison
between pointers to
different arrays

PTR_TO_DIFF_ARRAY

Tainted division operand TAINTED_INT_DIVISION
Tainted modulo operand TAINTED_INT_MOD
Tainted NULL or non-null-
terminated string

TAINTED_STRING

Tainted sign change
conversion

TAINTED_SIGN_CHANGE

Tainted size of variable
length array

TAINTED_VLA_SIZE

Tainted string format TAINTED_STRING_FORMAT
Thread-specific memory leak THREAD_MEM_LEAK
Throw argument raises
unexpected exception

THROW_ARGUMENT_EXPRESSION_THROWS

TLS/SSL connection method
not set

CRYPTO_SSL_NO_ROLE

TLS/SSL connection method
set incorrectly

CRYPTO_SSL_BAD_ROLE

Too many va_arg calls for
current argument list

TOO_MANY_VA_ARG_CALLS

Typedef mismatch TYPEDEF_MISMATCH
Umask used with chmod-style
arguments

BAD_UMASK

Uncleared sensitive data in
stack

SENSITIVE_STACK_NOT_CLEARED

Universal character name
from token concatenation

PRE_UCNAME_JOIN_TOKENS

Unmodified variable not
const-qualified

UNMODIFIED_VAR_NOT_CONST

Unnamed namespace in header
file

UNNAMED_NAMESPACE_IN_HEADER

Unprotected dynamic memory
allocation

UNPROTECTED_MEMORY_ALLOCATION

Unreachable code UNREACHABLE
Unreliable cast of function
pointer

FUNC_CAST

Unreliable cast of pointer PTR_CAST
Unsafe call to a system
function

UNSAFE_SYSTEM_CALL

 Short Names of Bug Finder Defect Checkers

2-23

Defect Command-line Name
Unsafe conversion between
pointer and integer

BAD_INT_PTR_CAST

Unsafe conversion from
string to numerical value

UNSAFE_STR_TO_NUMERIC

Unsafe standard encryption
function

UNSAFE_STD_CRYPT

Unsafe standard function UNSAFE_STD_FUNC
Unsigned integer constant
overflow

UINT_CONSTANT_OVFL

Unsigned integer conversion
overflow

UINT_CONV_OVFL

Unsigned integer overflow UINT_OVFL
Unused parameter UNUSED_PARAMETER
Use of a forbidden function FORBIDDEN_FUNC
Useless if USELESS_IF
Use of automatic variable as
putenv-family function
argument

PUTENV_AUTO_VAR

Use of dangerous standard
function

DANGEROUS_STD_FUNC

Use of externally controlled
environment variable

TAINTED_ENV_VARIABLE

Use of indeterminate string INDETERMINATE_STRING
Use of new or make_unique
instead of more efficient
make_shared

MISSING_MAKE_SHARED

Use of memset with size
argument zero

MEMSET_INVALID_SIZE

Use of non-secure temporary
file

NON_SECURE_TEMP_FILE

Use of obsolete standard
function

OBSOLETE_STD_FUNC

Use of path manipulation
function without maximum
sized buffer checking

PATH_BUFFER_OVERFLOW

Use of plain char type for
numerical value

BAD_PLAIN_CHAR_USE

Use of previously closed
resource

CLOSED_RESOURCE_USE

Use of previously freed
pointer

FREED_PTR

Use of tainted pointer TAINTED_PTR

2 Fix or Comment Polyspace Results

2-24

Defect Command-line Name
Use of setjmp/longjmp SETJMP_LONGJMP_USE
Use of undefined thread ID UNDEFINED_THREAD_ID
Use of signal to kill thread THREAD_KILLED_WITH_SIGNAL
Variable length array with
nonpositive size

NON_POSITIVE_VLA_SIZE

Variable shadowing VAR_SHADOWING
Vulnerable path manipulation PATH_TRAVERSAL
Vulnerable permission
assignments

DANGEROUS_PERMISSIONS

Vulnerable pseudo-random
number generator

VULNERABLE_PRNG

Weak cipher algorithm CRYPTO_CIPHER_WEAK_CIPHER
Weak cipher mode CRYPTO_CIPHER_WEAK_MODE
Weak padding for RSA
algorithm

CRYPTO_RSA_WEAK_PADDING

Write without a further read USELESS_WRITE
Writing to const qualified
object

CONSTANT_OBJECT_WRITE

Writing to read-only
resource

READ_ONLY_RESOURCE_WRITE

Wrong allocated object size
for cast

OBJECT_SIZE_MISMATCH

Wrong type used in sizeof PTR_SIZEOF_MISMATCH
X.509 peer certificate not
checked

CRYPTO_SSL_CERT_NOT_CHECKED

See Also

More About
• “Hide Known or Acceptable Polyspace Results” on page 2-5

 Short Names of Bug Finder Defect Checkers

2-25

Short Names of Code Complexity Metrics
When annotating your code to justify metrics or creating custom software quality objectives, you use
short names of code complexity metrics instead of the full names. The following table lists the short
names for code complexity metrics.

Note that you can only annotate your code for function level code complexity metrics only.

Project Metrics
Code Metric Acronym
Number of Direct Recursions AP_CG_DIRECT_CYCLE
Number of Header Files INCLUDES
Number of Files FILES
Number of Protected Shared Variables
(Code Prover only)

PSHV

Number of Recursions AP_CG_CYCLE
Number of Potentially Unprotected
Shared Variables (Code Prover only)

UNPSHV

Program Maximum Stack Usage (Code Prover
only)

PROG_MAX_STACK

Program Minimum Stack Usage (Code Prover
only)

PROG_MIN_STACK

File Metrics
Code Metric Acronym
Comment Density COMF
Estimated Function Coupling FCO
Number of Lines TOTAL_LINES
Number of Lines Without Comment LINES_WITHOUT_CMT

Function Metrics
Code Metric Acronym
Cyclomatic Complexity VG
Higher Estimate of Local Variable Size LOCAL_VARS_MAX
Language Scope VOCF
Language Scope LOCAL_VARS_MIN
Minimum Stack Usage (Code Prover only) MIN_STACK
Maximum Stack Usage (Code Prover only) MAX_STACK
Number of Call Levels LEVEL

2 Fix or Comment Polyspace Results

2-26

Code Metric Acronym
Number of Call Occurrences NCALLS
Number of Called Functions CALLS
Number of Calling Functions CALLING
Number of Executable Lines FXLN
Number of Function Parameters PARAM
Number of Goto Statements GOTO
Number of Instructions STMT
Number of Lines Within Body FLIN
Number of Local Non-Static Variables LOCAL_VARS
Number of Local Static Variables LOCAL_STATIC_VARS
Number of Paths PATH
Number of Return Statements RETURN

See Also

More About
• “Hide Known or Acceptable Polyspace Results” on page 2-5

 Short Names of Code Complexity Metrics

2-27

Define Custom Annotation Format
This example shows how to create and edit an XML file to define an annotation format and map it to
the Polyspace annotation syntax. Once you create and edit the XML file, pass the file to Polyspace by
using option -xml-annotations-description.

To define multiple custom annotation formats, see “Define Multiple Custom Annotation Syntaxes” on
page 2-34.

To get started, copy the following code to a text editor and save it on your machine as
annotations_description.xml.

2 Fix or Comment Polyspace Results

2-28

<?xml version="1.0" encoding="UTF-8"?>

<Annotations xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="annotations_xml_schema.xsd"
 Group="example XML">

 <Expressions Search_For_Keywords="myKeyword"
 Separator_Result_Name="," >
 <!-- Define annotation format in this
 section by adding <Expression/> elements -->

 <Expression Mode="SAME_LINE"
 Regex="myKeyword\s+(\w+(\s*,\s*\w+)*)"
 Rule_Identifier_Position="1"
 />

 <Expression Mode="GOTO_INCREMENT"
 Regex="myKeyword\s+(\+\d+\s)(\w+(\s*,\s*\w+)*)"
 Increment_Position="1"
 Rule_Identifier_Position="2"
 />

 <Expression Mode="BEGIN"
 Regex="myKeyword\s*(\w+(\s*,\s*\w+)*)\s*Block_on"
 Rule_Identifier_Position="1"
 Case_Insensitive="true"
 />

 <Expression Mode="END"
 Regex="myKeyword\s*(\w+(\s*,\s*\w+)*)\s*Block_off"
 Rule_Identifier_Position="1"
 />
 <Expression Mode="END_ALL"
 Regex="myKeyword\sBlock_off_all"
 />

 <Expression Mode="SAME_LINE"

Regex="myKeywords\s+(\w+(\s*,\s*\w+)*)
(\s*\[(\w+\s*)*([:]\s*(\w+\s*)+)*\])*(\s*-*\s*)*([^-]*)(\s*-*)*"
Rule_Identifier_Position="1"
Status_Position="4"
Severity_Position="6"
Comment_Position="8"
 />
<! -- Put the regular expression on a single line instead of two line
when you copy it to a text editor -->

 <!-- SAME_LINE example with more complex regular expression.
 Matches the following annotations:
 //myKeywords 50 [my_status:my_severity] -Additional comment-
 //myKeywords 50 [my_status]
 //myKeywords 50 [:my_severity]
 //myKeywords 50 -Additional comment-
 -->

 </Expressions>

 <Mapping>
 <!-- Map your annotation syntax to the Polyspace annotation
 syntax by adding <Result_Name_Mapping /> elements in this section -->

<Result_Name_Mapping Rule_Identifier="100" Family="DEFECT" Result_Name="INT_ZERO_DIV"/>

<Result_Name_Mapping Rule_Identifier="50" Family="MISRA-C3" Result_Name="8.4"/>
<Result_Name_Mapping Rule_Identifier="51" Family="MISRA-C3" Result_Name="8.7"/>
<Result_Name_Mapping Rule_Identifier="ALL_MISRA" Family="MISRA-C3" Result_Name="*"/>
 </Mapping>
</Annotations>

The XML file consists of two parts:

• <Expressions>...</Expressions> where you define the format of your annotation syntax.

 Define Custom Annotation Format

2-29

• <Mapping>...</Mapping> where you map your syntax to the Polyspace annotation syntax.

After you edit this file, Polyspace can interpret your custom code annotation when you invoke the
option -xml-annotations-description.

Define Annotation Syntax Format
To define an annotation syntax in Polyspace, your syntax must follow a pattern that you can represent
with a regular expression. See “Regular Expressions” (MATLAB). It is recommended that you include
a keyword in the pattern of your annotation syntax to help identify it. In this example, the keyword is
myKeyword. Set the attribute Search_For_Keywords equal to this keyword.

Once you know the pattern of your annotation, you can define it in the XML by adding an
<Expression/> element and specifying at least the attributes Mode, Regex, and
Rule_Identifier_Position. For instance, the first <Expression/> element in
annotations_description.xml defines an annotation with these attributes:

• Mode="SAME_LINE". The annotation applies to code on the same line.
• Regex="myKeyword\s+(\w+(\s*,\s*\w+)*)". Polyspace uses the regular expression to

search for a string that begins with myKeyword, followed by a space \s+. Polyspace then searches
for a capturing group (\w+(\s*,\s*\w+)*) that includes an alphanumeric rule identifier \w+
and, optionally, additional comma-separated rule identifiers (\s*,\s*\w+)*.

• Rule_Identifier_Position="1". The integer value of this attribute corresponds to the
number of opening parentheses preceding the relevant capturing group in the regular expression.
In myKeyword\s+(\w+(\s*,\s*\w+)*), one opening parenthesis precedes the capturing group
of the rule identifier (\w+(\s*,\s*\w+)*). If you want to match rule identifiers captured by
(\s*,\s*\w+), then you set Rule_Identifier_Position="2" because two opening
parentheses precede this capturing group.

The list of attributes and their values are listed in this table. The example column refers to the format
defined in annotations_description.xml.

Attribute Use Value Example
Mode Required SAME_LINE Applies only on the same line as the

annotation.

code; //myKeyword 100

GOTO_INCREME
NT

Applies on the same line as the annotation
and the following n lines:

3. code; // myKeyword +3 ALL_MISRA
4. /*comments */
5.
6. code;
7. code;

The preceding annotation applies to lines
3–6 only.

2 Fix or Comment Polyspace Results

2-30

Attribute Use Value Example
BEGIN Applies to the same line and all following

lines until a corresponding expression
with attribute Mode="END" or
"END_ALL", or until the end of the file.

 //myKeyword 50, 51 Block_on
 Code block 1;
 ...

END Stops the application of a rule identifier
declared by a corresponding expression
with attribute Mode="BEGIN".

 //myKeyword 50, 51 Block_on
 Code block 1;
 ...
 More code;
 //myKeyword 50 Block_off

Only rule identifier 50 is turned off. Rule
identifier 51 still applies.

END_ALL Stops all rule identifiers declared by an
expression with attribute Mode="BEGIN".

 //myKeyword 50, 51 Block_on
 Code block 1;
 ...
 More code;
 //myKeyword Block_off_all

Rule identifiers 50 and 51 are turned off.
Regex Required Regular

expression
search string

See “Regular Expressions” (MATLAB).
Regex="myKeyword\s+(\w+(\s*,\s*
\w+)*)" matches these expressions:

// myKeyword 50, 51
/* myKeyword ALL_MISRA, 100 */

 Define Custom Annotation Format

2-31

Attribute Use Value Example
Rule_Identifier
_Position

Required, except
when you set
Mode="END_ALL"

Integer The integer value of this attribute
corresponds to the number of opening
parentheses in the regular expression
before the relevant search expression.

<Expression Mode="GOTO_INCREMENT"
Regex="myKeyword\s+(\+\d+\s)
(\w+(\s*,\s*\w+)*)"
Increment_Position="1"
Rule_Identifier_Position="2"/>

Note Enter the regex expression on a
single line when you edit your XML file.

The search expression for the rule
identifier \w+(\s*,\s*\w+)* is after the
second opening parenthesis of the regular
expression.

Increment_Posit
ion

Required only
when you set
Mode="GOTO_INC
REMENT"

Integer The integer value of this attribute
corresponds to the number of opening
parentheses in the regular expression
before the relevant search expression.

<Expression Mode="GOTO_INCREMENT"
Regex="myKeyword\s+(\+\d+\s)
(\w+(\s*,\s*\w+)*)"
Increment_Position="1"
Rule_Identifier_Position="2"/>

Note Enter the regex expression on a
single line when you edit your XML file.

The search expression for the increment \
+\d+\s is after the first opening
parenthesis of the regular expression.

Status_Position Optional Integer See Increment_Position example.
When you use this attribute, the entry in
your annotation is displayed in the Status
column on the Results List pane of the
user interface.

Severity_Positi
on

Optional Integer See Increment_Position example.
When you use this attribute, the entry in
your annotation is displayed in the
Severity column on the Results List pane
of the user interface.

2 Fix or Comment Polyspace Results

2-32

Attribute Use Value Example
Comment_Positio
n

Optional Integer See Increment_Position example.
When you use this attribute, the entry in
your annotation is displayed in the
Comment column on the Results List
pane of the user interface. Your comment
is appended to the string Justified by
annotation in source:

Case_Insensitiv
e

Optional True or false When you set this attribute to "true", the
regular expression is case insensitive,
otherwise it is case sensitive. If you do not
declare this attribute in your expression,
the regular expression is case sensitive.
For Case_Insensitive="true", these
annotations are equivalent:

//MYKEYWORD ALL_MISRA BLOCK_ON

//mykeyword all_misra block_on

Map Your Annotation to the Polyspace Annotation Syntax
After you define your annotation format, you can map the rule identifiers you are using to their
corresponding Polyspace annotation syntax. You can do this mapping by adding an
<Result_Name_Mapping/> element and specifying attributes Rule_Identifier, Family, and
Result_Name. For instance, if rule identifier 50 corresponds to MISRA C: 2012 rule 8.4, map it to the
Polyspace syntax MISRA-C3:8.4 by using this element:
<Result_Name_Mapping Rule_Identifier="50" Family="MISRA-C3" Result_Name="8.4"/>

The list of attributes and their values are listed in this table. The example column refers to the format
defined in annotations_description.xml.

Attribute Use Value Example
Rule_Identifier Required User defined. Each

value must be unique.
See the mapping
section of
annotations_descri
ption.xml

Family Required Corresponds to
Polyspace results family.
For a list of allowed
values, see allowed
values on page 2-6.

See the mapping
section of
annotations_descri
ption.xml

Result_Name Required Corresponds to
Polyspace result names.
For a list of allowed
values, see allowed
values on page 2-6.

See the mapping
section of
annotations_descri
ption.xml

 Define Custom Annotation Format

2-33

Define Multiple Custom Annotation Syntaxes
To define more than one annotation syntax, in your XML file, specify a comma separated list of
keywords associated with each syntax for the Search_For_Keywords attribute.

For example, if you use custom annotations that follow these patterns to annotate violations of MISRA
C: 2012 rules:

int func(int p) //customSyntax M123 $ customSyntax M124
{
 int i;
 int j = 1;

 i = 1024 / (j - p);
 return i;
}

int func2(void){ //otherCustomSyntax 50
 int x=func(2);
 return x;
}

Enter the following in the XML file where you define the custom annotation syntax.
<?xml version="1.0" encoding="UTF-8"?>

<Annotations xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="annotations_xml_schema.xsd"
 Group="multipleCustomSyntax">
 <!-- Enter comma separated list of keywords -->
 <Expressions Search_For_Keywords="customSyntax,otherCustomSyntax"
 Separator_Result_Name="$" >

 <!-- This section defines the annotation syntax format -->
 <Expression Mode="SAME_LINE"
 Regex="customSyntax\s(\w+(\s*,\s*\w+)*)"
 Rule_Identifier_Position="1"
 />
 <Expression Mode="SAME_LINE"
 Regex="otherCustomSyntax\s(\w+(\s*,\s*\w+)*)"
 Rule_Identifier_Position="1"
 />
 </Expressions>
 <!-- This section maps the user annotation to the Polyspace
 annotation syntax -->
 <Mapping>
 <!-- Mapping for customSyntax rules -->
 <Result_Name_Mapping Rule_Identifier="M123" Family="MISRA-C3" Result_Name="8.7"/>
 <Result_Name_Mapping Rule_Identifier="M124" Family="MISRA-C3" Result_Name="D4.6"/>
 <!-- Mapping for otherCustomSyntax rules -->
 <Result_Name_Mapping Rule_Identifier="50" Family="MISRA-C3" Result_Name="8.4"/>
 </Mapping>
</Annotations>

When you use multiple custom annotations, each rule identifier must be unique. For instance, in the
preceding example, you cannot reuse rule identifier M123 with otherCustomSyntax.

See Also
-xml-annotations-description

More About
• “Annotation Description Full XML Template” on page 2-36
• “Hide Known or Acceptable Polyspace Results” on page 2-5

2 Fix or Comment Polyspace Results

2-34

• “Resolve -xml-annotations-description Errors” on page 4-7

 Define Custom Annotation Format

2-35

Annotation Description Full XML Template
This table lists all the elements, attributes, and values of the XML that you can use to define an
annotation format and map it to the Polyspace annotation syntax. For an example of how to edit an
XML to define annotation syntax, see “Define Custom Annotation Format” on page 2-28.

Element Attribute Use Value
Annotations Group Required User defined string. For

example, "Custom
Annotations"

Expressions Search_For_Keyword
s

Required User defined string.
This string is a keyword
you include in the
pattern of your
annotation syntax to
help identify it. For
example, "myKeyword".
To use multiple custom
annotations, enter a
comma separated list of
keyword. See “Define
Multiple Custom
Annotation Syntaxes”
on page 2-34.

Separator_Result_N
ame

Required User defined string.
This string is a
separator when you list
multiple Polyspace
result names in the
same annotation. For
example ","

Separator_Family_A
nd_Result_Name

Optional User defined string.
This string is a
separator when you list
multiple Polyspace
results families in the
same annotation. For
example, " "

Separator_Family Optional User defined string.
This string is a
separator when you list
a Polyspace results
family and results name
in the same annotation.
For example, ":"

Expression Mode Required SAME_LINE
GOTO_INCREMENT
BEGIN

2 Fix or Comment Polyspace Results

2-36

Element Attribute Use Value
END
END_ALL
NEXT_CODE_LINE

The annotation applies
to the next line of code.
Comments and blank
lines are ignored.
GOTO_LABEL
LABEL
XML_START
XML_CONTENT

The annotation for this
expression must be on a
single line.
XML_END

Regex Required Regular expression
search string that
matches the pattern of
your annotation.

Rule_Identifier_Po
sition

Required, except when
you set
Mode="END_ALL" or
"LABEL"

Integer. The integer
value of this attribute
corresponds to the
number of opening
parentheses in the
regular expression
before the relevant
search expression.

Increment_Position Required only when you
set
Mode="GOTO_INCREME
NT"

Integer. The integer
value of this attribute
corresponds to the
number of opening
parentheses in the
regular expression
before the relevant
search expression.

Status_Position Optional Integer. The integer
value of this attribute
corresponds to the
number of opening
parentheses in the
regular expression
before the relevant
search expression.

 Annotation Description Full XML Template

2-37

Element Attribute Use Value
Severity_Position Optional Integer. The integer

value of this attribute
corresponds to the
number of opening
parentheses in the
regular expression
before the relevant
search expression.

Comment_Position Optional Integer. The integer
value of this attribute
corresponds to the
number of opening
parentheses in the
regular expression
before the relevant
search expression.

Label_Position Required only when you
set
Mode="GOTO_LABEL"
or "LABEL"

Integer. The integer
value of this attribute
corresponds to the
number of opening
parentheses in the
regular expression
before the relevant
search expression.

Case_Insensitive Optional True or false. When you
do not declare this
attribute, the default
value is false.

Is_Pragma Optional True or false. When you
do not declare this
attribute, the default
value is false.

Set this attribute to true
if you want to declare
your annotation using a
pragma instead of a
comment.

Applies_Also_On_Sa
me_Line

Optional True or false. When you
do not declare this
attribute, the default
value is true.

Use this attribute to
enable annotations with
the old Polyspace syntax
to apply on the same
line of code.

2 Fix or Comment Polyspace Results

2-38

Element Attribute Use Value
Mapping None None None
Result_Name_Mappin
g

Rule_Identifier Required User defined
Family Required Corresponds to

Polyspace results family.
For a list of allowed
values, see allowed
values on page 2-6.

Result_Name Required Corresponds to
Polyspace result names.
For a list of allowed
values, see allowed
values on page 2-6.

Example
This example code covers some of the less commonly used attributes for defining annotations in XML.

 Annotation Description Full XML Template

2-39

<?xml version="1.0" encoding="UTF-8"?>

<Annotations xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="annotations_xml_schema.xsd"
 Group="XML Template">

 <Expressions Separator_Result_Name=","
 Search_For_Keywords="myKeyword">

 <Expression Mode="GOTO_LABEL"
 Regex="(\A|\W)myKeyword\s+S\s+(\d+(\s*,\s*\d+)*)\s+([a-zA-Z_-]\w+)"
 Rule_Identifier_Position="2"
 Label_Position="4"

 />

 <Expression Mode="LABEL"
 Regex="(\A|\W)myKeyword\s+L:(\w+)"
 Label_Position="2"

 />
 <!-- Annotation applies starting current line until
 next declaration of label word "myLabel"
 Example:

 code; // myKeyword S 100 myLabel
 ...
 more code;
 // myKeyword L myLabel
 -->

 <Expression Mode="BEGIN"
 Regex="#\s*pragma\s+myKeyword_MESSAGES_ON\s+(\w+)"
 Rule_Identifier_Position="1"
 Is_Pragma="true"
 />
 <!-- Annotation declared with pragma instead of comment
 Example:#pragma myKeyword_MESSAGES_ON 100 -->

 <!-- Comment declaration with XML format-->

 <!-- XML_START must be declared before XML_CONTENT -->
 <Expression Mode="XML_START"
 Regex="<\s*myKeyword_COMMENT\s*>"

 />
 <!-- Example: <myKeyword_COMMENT> -->

 <Expression Mode="XML_CONTENT"
 Regex="<\s*(\d*)\s*>(((?![*]/)(?!<).)*)</\s*(\d*)\s*>"
 Rule_Identifier_Position="1"
 Comment_Position="2"

 />
 <!-- Example: <100>This is my comment</100>
 XML_CONTENT must be declare on a single line.

 <100>This is my comment
 </100>
 is incorrect.
 -->

 <Expression Mode="XML_END"
 Regex="</\s*myKeyword_COMMENT\s*>"

 />
 <!-- Example: </myKeyword_COMMENT> -->
 </Expressions>

 <Mapping>

 <Result_Name_Mapping Rule_Identifier="100" Family="MISRA-C" Result_Name="4.1"/>
 </Mapping>
</Annotations>

2 Fix or Comment Polyspace Results

2-40

See Also

More About
• “Hide Known or Acceptable Polyspace Results” on page 2-5

 Annotation Description Full XML Template

2-41

Manage Results

• “Filter and Sort Results in Polyspace Access Web Interface” on page 3-2
• “Create Custom Filter Groups in Polyspace Access Web Interface” on page 3-6
• “Compare Analysis Results to Previous Runs” on page 3-8
• “Classification of Defects by Impact” on page 3-11
• “Bug Finder Defect Groups” on page 3-22

3

Filter and Sort Results in Polyspace Access Web Interface
This topic describes how to filter, sort, and otherwise manage results in the Polyspace Access web
interface. For a similar workflow in the user interface of the Polyspace desktop products, see “Filter
and Group Results in Polyspace Desktop User Interface” (Polyspace Bug Finder).

When you open the results of a Polyspace analysis in the DASHBOARD view of Polyspace Access,
you see statistics about your project in the Project Overview dashboard. The statistics cover findings
for:

• Bug Finder “Defects”.
• Code Prover “Run-Time Checks” (Polyspace Code Prover Access).
• “Coding Standards” violations.
• “Code Metrics” and “Bug Finder Quality Objectives” on page 1-38 compliance.

To organize your review, you can narrow down the list or group results by file or result type.

3 Manage Results

3-2

Some of the ways you can use filtering are:

• You can display only certain types of defects or run-time checks.

For instance, for a Bug Finder analysis, you can display only high-impact defects. See
“Classification of Defects by Impact” on page 3-11.

 Filter and Sort Results in Polyspace Access Web Interface

3-3

• You can display only new results found since the last analysis or since a previous analysis. See
“Compare Analysis Results to Previous Runs” on page 3-8.

• You can display only the results that you have not justified. Results that are not justified are
considered Open. They are results with status Unreviewed, To Investigate, To Fix, or
Other.

For information on justification, see “Address Results in Polyspace Access Through Bug Fixes or
Justifications” on page 2-2.

• You can display only results that you still need to address to reach a Quality Objectives
threshold.

Filter Results
You can filter results by drilling down on a set of results in a dashboard, or directly in the Results
List pane by using the REVIEW toolstrip filters.

Filter Using Dashboards

In the DASHBOARD view, you can:

• Click a section of a pie chart or a pie chart legend on the Project Overview dashboard to see the
corresponding set of results.

• Open dashboards for different families of results, then click a number to open a list filtered to the
corresponding set of results. For instance:

• To see only high-impact defects that are still Open in a Bug Finder analysis, click the
corresponding number in the Summary section of the Defects dashboard. Open results have
status Unreviewed, To Investigate, To Fix, or Other.

• To see only red checks that are Done in a Code Prover analysis, click the corresponding
number in the Summary section of the Run-time Checks dashboard. Done results have
status Justified, No Action Planned, or Not A Defect.

• To see violations of the MISRAC C:2012 coding standards in a particular file, use the table in
the Details section of the MISRA C:2012 dashboard.

3 Manage Results

3-4

• Compare the Current run to an earlier Baseline run and review New or Unresolved findings.
See “Compare Analysis Results to Previous Runs” on page 3-8.

If you select a folder that contains multiple projects in the Project Explorer, the dashboards display
an aggregate of results for all the projects. Most of the fields in the dashboard are not clickable when
you look at the statistics for multiple projects.

Filter Using REVIEW Toolstrip

In the REVIEW view, you can filter results by families of Polyspace results (FAMILY FILTERS), or by
result review progress (FILTERS).

The filter bar underneath the toolstrip shows how many findings are displayed out of the total
findings, along with which filters are currently applied.

The buttons in the FILTERS section of the toolstrip are global. They apply to all families of findings.

To filter results by specific content, such as a function name, use the Show only or Filter out text
filters. These filters match the text you enter against the content of all the columns in the “Results
List” on page 1-26. For instance, if you enter foo in the Filter out filter, the Results List hides all
the results that contain foo in any of the Results List columns.

You can also filter results by right-clicking the content of a column in the Results List. This action is
equivalent to entering the content directly in the Show only or Filter out text filters. For instance, if
you right-click foo in the Function column, the filter applies to all results that contain foo in any of
the Results List columns.

Filters you apply do not carry over to the next analysis.

See Also

More About
• “Classification of Defects by Impact” on page 3-11

 Filter and Sort Results in Polyspace Access Web Interface

3-5

Create Custom Filter Groups in Polyspace Access Web
Interface

When you review results in the Results List, you can apply filters from the FAMILY FILTERS
section of the toolstrip to focus your review on specific Polyspace families of results, such as:

• Bug Finder “Defects”.
• Code Prover “Run-Time Checks” (Polyspace Code Prover Access) and “Global Variables”

(Polyspace Code Prover Access).
• “Coding Standards”.
• “Code Metrics”.

Define custom filters to narrow the scope of your review to only findings that are relevant to your
project or organization. For instance, you might be interested in reviewing only Numerical Bug
Finder defects and violations of Mandatory MISRA C:2012 rules.

Once you define custom filters, you can share those filters with other Polyspace Access users to
ensure consistent review scopes across your projects or organization.

To create or edit a custom filter, click Apply/Manage > Manage filters.

To create a new filter, in the Custom filters window, click New and then enter the filter name in the
New Custom Filter pop-up window. You can optionally provide a description and enable the Shared
filter checkbox to share the filter with other Polyspace Access users.

3 Manage Results

3-6

By default, custom filters are private and can be viewed only by the user who creates the filter. A
private filter can be edited only by the user who creates that filter. A shared filter can be edited by
the user who creates the filter or by a user with the role of Administrator.

To make changes to a filter name, description, or to enable or disable filter sharing, go to the
Information tab.

To edit the filter selection, on the Configuration tab, click a Polyspace results family, for instance
MISRA C:2012, and then select a node or expand the node to select individual results. For each family
of results, you can view the nodes by group or by category when available.

To save your changes, click Save or Save as to save your edits in as new custom filter.

Apply custom filters by selecting the appropriate filter from Apply/Manage > Private filters or
Apply/Manage > Shared filters. You can apply more than one custom filter, including combinations
of private and shared filters.

Custom filters do not apply to the DASHBOARD view.

See Also

Related Examples
• “Filter Results” on page 3-4
• “Customize Software Quality Objectives” on page 1-15

 Create Custom Filter Groups in Polyspace Access Web Interface

3-7

Compare Analysis Results to Previous Runs
When you open Polyspace analysis results in the Polyspace Access DASHBOARD or REVIEW, you
see a snapshot of the most recent run that was uploaded to the project. To view a snapshot from an
earlier run, select that run from the Current run drop-down list.

Select a previous run to see the state of your project from a few submissions ago. For instance, you
might want to investigate a spike in findings in a previous version of your project. When you view an
older project run in the DASHBOARD or REVIEW views, all the information for the currently
selected run is displayed, except:

• The Quality Objectives settings and the Review History pane show the same information no
matter which run you select.

• You cannot edit the Result Details fields if the selected run is not the latest run.

If you share a finding URL from an older run, the Polyspace Access interface opens that finding in the
most recent version of the project. If the finding is not present in the most recent run, through the
interface, you can open the finding in the older run.

Comparison Mode
To compare two runs in a project, on the toolstrip, select a Current run, and then select a Baseline
run. Ensure that the Baseline checkbox is enabled. You can compare current runs to only older
baseline runs.

3 Manage Results

3-8

In the DASHBOARD view, the comparison shows a summary of statistics for each run and details of
the number of findings that are:

• Resolved: Findings from the baseline run that are Done in the current run, or findings that are
not in the current run because they are Fixed. Findings are Done if they have a status of
Justified, No Action Planned, or Not A Defect. Findings are Fixed if they are fixed in the
source code or the source code containing the finding is deleted or no longer part of the analysis.

• New: Findings that are in the current run but not in the baseline run.
• Unresolved: Findings that are in the baseline run and the current run.

The comparison mode is not available for the Code Metrics and Quality Objectives dashboards.

Click a cell in the Details table to open the corresponding results in the Results List. If a finding is
Resolved, the interface displays the Source Code and Result Details information from the
Baseline run.

In the REVIEW view, in addition to Resolved, New, and Unresolved, you can filter findings by
Fixed. These findings are no longer in the current run because they are fixed, or the source code
containing the findings is deleted or no longer part of the analysis.

The total number of findings displayed in the Results List corresponds to the findings from the
Current run and the findings from the Baseline run that are Fixed in the Current run.

To turn off the comparison mode, deselect the Baseline checkbox or select None in the Baseline
drop-down list.

 Compare Analysis Results to Previous Runs

3-9

See Also

Related Examples
• “Address Results in Polyspace Access Through Bug Fixes or Justifications” on page 2-2
• “Filter Results” on page 3-4

3 Manage Results

3-10

Classification of Defects by Impact
To prioritize your review of Polyspace Bug Finder defects, you can use the Impact attribute assigned
to the defect. This attribute appears on:

• The Summary section of the Defects dashboard.

You can view at a glance whether you have many high impact defects, and how many defects are
still open. Open defects are defects that have a status Unreviewed, To Investigate, To Fix,
or Other. You can click a number to open the corresponding set of results in the Results List
pane. See “Filter and Sort Results in Polyspace Access Web Interface” on page 3-2.

• The Results List pane, in the REVIEW view. Use the drop-down selection under the Defects
button in the toolstrip.

You can filter out low and/or medium impact defects using this button. See “Filter and Sort Results
in Polyspace Access Web Interface” on page 3-2.

• The Result Details pane, beside the defect name.

The impact is assigned to a defect based on the following considerations:

• Criticality, or whether the defect is likely to cause a code failure.

If a defect is likely to cause a code to fail, it is treated as a high impact defect. If the defect
currently does not cause code failure but can cause problems with code maintenance in the
future, it is a low impact defect.

• Certainty, or the rate of false positives.

For instance, the defect Integer division by zero is a high-impact defect because it is almost certain
to cause a code crash. On the other hand, the defect Dead code has low impact because by itself,
presence of dead code does not cause code failure. However, the dead code can hide other high-
impact defects.

You cannot change the impact assigned to a defect.

High Impact Defects
The following list shows the high-impact defects.

 Classification of Defects by Impact

3-11

C++ Exception

• Noexcept function exits with exception
• Throw argument raises unexpected exception

Concurrency

• Data race on adjacent bit fields
• Data race
• Data race through standard library function call
• Deadlock
• Double lock
• Double unlock
• Missing unlock

Data Flow

• Non-initialized pointer
• Non-initialized variable

Dynamic Memory

• Deallocation of previously deallocated pointer
• Invalid deletion of pointer
• Invalid free of pointer
• Use of previously freed pointer

Numerical

• Absorption of float operand
• Float conversion overflow
• Float division by zero
• Integer conversion overflow
• Integer division by zero
• Invalid use of standard library floating point routine
• Invalid use of standard library integer routine

Object Oriented

• Base class assignment operator not called
• Copy constructor not called in initialization list
• Object slicing

Performance

• Empty destructors may cause unnecessary data copies
• Inefficient string length computation

3 Manage Results

3-12

• std::endl may cause an unnecessary flush

Programming

• Assertion
• Character value absorbed into EOF
• Declaration mismatch
• Errno not reset
• Incorrect value forwarding
• Invalid use of == (equality) operator
• Invalid use of standard library routine
• Invalid va_list argument
• Misuse of errno
• Misuse of narrow or wide character string
• Misuse of return value from nonreentrant standard function
• Move operation on const object
• Non-compliance with AUTOSAR specification
• Possible misuse of sizeof
• Possibly unintended evaluation of expression because of operator precedence

rules
• Typedef mismatch
• Variable length array with nonpositive size
• Writing to const qualified object
• Wrong type used in sizeof

Resource Management

• Closing a previously closed resource
• Resource leak
• Use of previously closed resource
• Writing to read-only resource

Security

• Bad order of dropping privileges
• Privilege drop not verified
• Returned value of a sensitive function not checked
• Unsafe call to a system function
• Use of non-secure temporary file

Static Memory

• Array access out of bounds
• Buffer overflow from incorrect string format specifier

 Classification of Defects by Impact

3-13

• Destination buffer overflow in string manipulation
• Destination buffer underflow in string manipulation
• Invalid use of standard library memory routine
• Invalid use of standard library string routine
• Null pointer
• Pointer access out of bounds
• Pointer or reference to stack variable leaving scope
• Subtraction or comparison between pointers to different arrays
• Use of automatic variable as putenv-family function argument
• Use of path manipulation function without maximum sized buffer checking
• Wrong allocated object size for cast

Medium Impact Defects
The following list shows the medium-impact defects.

C++ Exception

• Exception caught by value
• Exception handler hidden by previous handler

Concurrency

• Asynchronously cancellable thread
• Atomic load and store sequence not atomic
• Atomic variable accessed twice in an expression
• Automatic or thread local variable escaping from a thread
• Data race including atomic operations
• Destruction of locked mutex
• Join or detach of a joined or detached thread
• Missing or double initialization of thread attribute
• Missing lock
• Multiple mutexes used with same conditional variable
• Thread-specific memory leak
• Use of undefined thread ID

Cryptography

• Constant block cipher initialization vector
• Constant cipher key
• Context initialized incorrectly for cryptographic operation
• Context initialized incorrectly for digest operation
• Incompatible padding for RSA algorithm operation
• Inconsistent cipher operations

3 Manage Results

3-14

• Incorrect key for cryptographic algorithm
• Missing blinding for RSA algorithm
• Missing block cipher initialization vector
• Missing certification authority list
• Missing cipher algorithm
• Missing cipher data to process
• Missing cipher final step
• Missing cipher key
• Missing data for encryption, decryption or signing operation
• Missing final step after hashing update operation
• Missing hash algorithm
• Missing padding for RSA algorithm
• Missing parameters for key generation
• Missing peer key
• Missing private key for X.509 certificate
• Missing private key
• Missing public key
• Missing salt for hashing operation
• Missing X.509 certificate
• No data added into context
• Nonsecure hash algorithm
• Nonsecure parameters for key generation
• Nonsecure RSA public exponent
• Nonsecure SSL/TLS protocol
• Predictable block cipher initialization vector
• Predictable cipher key
• Server certificate common name not checked
• TLS/SSL connection method not set
• TLS/SSL connection method set incorrectly
• Weak cipher algorithm
• Weak cipher mode
• Weak padding for RSA algorithm
• X.509 peer certificate not checked

Data Flow

• Pointer to non-initialized value converted to const pointer
• Unreachable code
• Useless if

 Classification of Defects by Impact

3-15

Dynamic Memory

• Memory leak

Numerical

• Bitwise operation on negative value
• Integer constant overflow
• Integer overflow
• Sign change integer conversion overflow
• Use of plain char type for numerical value

Object Oriented

• Base class destructor not virtual
• Bytewise operations on nontrivial class object
• Conversion or deletion of incomplete class pointer
• Copy operation modifying source operand
• Incompatible types prevent overriding
• Member not initialized in constructor
• Missing virtual inheritance
• Operator new not overloaded for possibly overaligned class
• Partial override of overloaded virtual functions
• Return of non const handle to encapsulated data member
• Self assignment not tested in operator

Performance

• Const std::move input may cause a more expensive object copy
• Expensive c_str() to std::string construction
• Expensive constant std::string construction
• Expensive copy in a range-based for loop iteration
• Expensive local variable copy
• Expensive logical operation
• Expensive pass by value
• Expensive return by value
• Inefficient string length computation
• Missing constexpr specifier
• std::move called on an unmovable type

Programming

• Abnormal termination of exit handler
• Bad file access mode or status
• Call through non-prototyped function pointer

3 Manage Results

3-16

• Copy of overlapping memory
• Environment pointer invalidated by previous operation
• Exception caught by value
• Exception handler hidden by previous handler
• Floating point comparison with equality operators
• Function called from signal handler not asynchronous-safe
• Function called from signal handler not asynchronous-safe (strict)
• Improper array initialization
• Incorrect data type passed to va_arg
• Incorrect pointer scaling
• Incorrect type data passed to va_start
• Incorrect use of offsetof in C++
• Incorrect use of va_start
• Inline constraint not respected
• Invalid assumptions about memory organization
• Invalid file position
• Invalid use of = (assignment) operator
• Memory comparison of padding data
• Memory comparison of strings
• Missing byte reordering when transfering data
• Misuse of errno in a signal handler
• Misuse of sign-extended character value
• Shared data access within signal handler
• Side effect in arguments to unsafe macro
• Signal call from within signal handler
• Standard function call with incorrect arguments
• Too many va_arg calls for current argument list
• Unnamed namespace in header file
• Unsafe conversion between pointer and integer
• Use of indeterminate string
• Use of memset with size argument zero

Resource Management

• Opening previously opened resource

Security

• Deterministic random output from constant seed
• Errno not checked
• Execution of a binary from a relative path can be controlled by an external

actor

 Classification of Defects by Impact

3-17

• File access between time of check and use (TOCTOU)
• File descriptor exposure to child process
• File manipulation after chroot without chdir
• Hard-coded sensitive data
• Inappropriate I/O operation on device files
• Incorrect order of network connection operations
• Load of library from a relative path can be controlled by an external actor
• Mismatch between data length and size
• Misuse of readlink()
• Predictable random output from predictable seed
• Sensitive data printed out
• Sensitive heap memory not cleared before release
• Uncleared sensitive data in stack
• Unsafe standard encryption function
• Unsafe standard function
• Vulnerable permission assignments
• Vulnerable pseudo-random number generator

Static Memory

• Unreliable cast of function pointer
• Unreliable cast of pointer

Tainted Data

• Array access with tainted index
• Command executed from externally controlled path
• Execution of externally controlled command
• Host change using externally controlled elements
• Library loaded from externally controlled path
• Loop bounded with tainted value
• Memory allocation with tainted size
• Tainted sign change conversion
• Tainted size of variable length array
• Use of externally controlled environment variable

Low Impact Defects
The following list shows the low-impact defects.

Concurrency

• Blocking operation while holding lock
• Function that can spuriously fail not wrapped in loop

3 Manage Results

3-18

• Function that can spuriously wake up not wrapped in loop
• Multiple threads waiting on same condition variable
• Signal call in multithreaded program
• Use of signal to kill thread

Data Flow

• Code deactivated by constant false condition
• Dead code
• Missing return statement
• Partially accessed array
• Static uncalled function
• Variable shadowing
• Write without a further read

Dynamic Memory

• Alignment changed after memory reallocation
• Mismatched alloc/dealloc functions on Windows
• Unprotected dynamic memory allocation

Good Practice

• Ambiguous declaration syntax
• Bitwise and arithmetic operation on a same data
• C++ reference to const-qualified type with subsequent modification
• C++ reference type qualified with const or volatile
• Delete of void pointer
• File does not compile
• Hard coded buffer size
• Hard coded loop boundary
• Hard-coded object size used to manipulate memory
• Incorrect syntax of flexible array member size
• Incorrectly indented statement
• Line with more than one statement
• Macro terminated with a semicolon
• Macro with multiple statements
• Missing break of switch case
• Missing overload of allocation or deallocation function
• Missing reset of a freed pointer
• Possibly inappropriate data type for switch expression
• Redundant expression in sizeof operand
• Semicolon on same line as if, for or while statement

 Classification of Defects by Impact

3-19

• Unmodified variable not const-qualified
• Unused parameter
• Use of a forbidden function
• Use of setjmp/longjmp

Numerical

• Float overflow
• Integer precision exceeded
• Possible invalid operation on boolean operand
• Precision loss from integer to float conversion
• Shift of a negative value
• Shift operation overflow
• Unsigned integer constant overflow
• Unsigned integer conversion overflow
• Unsigned integer overflow

Object Oriented

• *this not returned in copy assignment operator
• Lambda used as typeid operand
• Missing explicit keyword

Performance

• A move operation may throw
• Const parameter values may cause unnecessary data copies
• Const return values may cause unnecessary data copies
• Const rvalue reference parameter may cause unnecessary data copies
• Empty destructors may cause unnecessary data copies
• Expensive use of non-member std::string operator+() instead of a simple

append
• Expensive use of std::string methods instead of more efficient overload
• Expensive use of std::string with empty string literal
• std::endl may cause an unnecessary flush
• Use of new or make_unique instead of more efficient make_shared

Programming

• Accessing object with temporary lifetime
• Alternating input and output from a stream without flush or positioning

call
• Call to memset with unintended value
• Format string specifiers and arguments mismatch
• Memory comparison of float-point values

3 Manage Results

3-20

• Missing null in string array
• Misuse of a FILE object
• Misuse of structure with flexible array member
• Modification of internal buffer returned from nonreentrant standard

function
• Overlapping assignment
• Predefined macro used as an object
• Preprocessor directive in macro argument
• Qualifier removed in conversion
• Return from computational exception signal handler
• Side effect of expression ignored
• Stream argument with possibly unintended side effects
• Universal character name from token concatenation
• Unsafe string to numeric value conversion

Security

• Function pointer assigned with absolute address
• Information leak via structure padding
• Missing case for switch condition
• Umask used with chmod-style arguments
• Use of dangerous standard function
• Use of obsolete standard function
• Vulnerable path manipulation

Static Memory

• Arithmetic operation with NULL pointer

Tainted Data

• Pointer dereference with tainted offset
• Tainted division operand
• Tainted modulo operand
• Tainted NULL or non-null-terminated string
• Tainted string format
• Use of tainted pointer

See Also

More About
• “Filter and Sort Results in Polyspace Access Web Interface” on page 3-2

 Classification of Defects by Impact

3-21

Bug Finder Defect Groups

In this section...
“Concurrency” on page 3-22
“Cryptography” on page 3-23
“Data flow” on page 3-23
“Dynamic Memory” on page 3-23
“Good Practice” on page 3-23
“Numerical” on page 3-24
“Object Oriented” on page 3-24
“Programming” on page 3-24
“Resource Management” on page 3-25
“Static Memory” on page 3-25
“Security” on page 3-25
“Tainted data” on page 3-25

For convenience, the defect checkers in Bug Finder are classified into various groups.

• In certain projects, you can choose to focus only on specific groups of defects. Specify the group
name for the option Find defects (-checkers). See the documentation for Polyspace Bug
Finder or Polyspace Bug Finder Server.

• When reviewing results, you can review all results of a certain group together. Filter out other
results during review. See “Manage Results”.

This topic gives an overview of the various groups.

Concurrency
These defects are related to multitasking code.

Data Race Defects

The data race defects occur when multiple tasks operate on a shared variable or call a nonreentrant
standard library function without protection.

For the specific defects, see “Concurrency Defects”.

Command-Line Parameter: concurrency

Locking Defects

The locking defects occur when the critical sections are not set up appropriately. For example:

• The critical sections are involved in a deadlock.
• A lock function does not have the corresponding unlock function.
• A lock function is called twice without an intermediate call to an unlock function.

3 Manage Results

3-22

Critical sections protect shared variables from concurrent access. Polyspace expects critical sections
to follow a certain format. The critical section must lie between a call to a lock function and a call to
an unlock function.

For the specific defects, see “Concurrency Defects”.

Command-Line Parameter: concurrency

Cryptography
These defects are related to incorrect use of cryptography routines from the OpenSSL library. For
instance:

• Use of cryptographically weak algorithms
• Absence of essential elements such as cipher key or initialization vector
• Wrong order of cryptographic operations

For the specific defects, see “Cryptography Defects”.

Command-Line Parameter: cryptography

Data flow
These defects are errors relating to how information moves throughout your code. The defects
include:

• Dead or unreachable code
• Unused code
• Non-initialized information

For the specific defects, see “Data Flow Defects”.

Command-Line Parameter: data_flow

Dynamic Memory
These defects are errors relating to memory usage when the memory is dynamically allocated. The
defects include:

• Freeing dynamically allocated memory
• Unprotected memory allocations

For specific defects, see “Dynamic Memory Defects”.

Command-Line Parameter: dynamic_memory

Good Practice
These defects allow you to observe good coding practices. The defects by themselves might not cause
a crash, but they sometimes highlight more serious logic errors in your code. The defects also make
your code vulnerable to attacks and hard to maintain.

 Bug Finder Defect Groups

3-23

The defects include:

• Hard-coded constants such as buffer size and loop boundary
• Unused function parameters

For specific defects, see “Good Practice Defects”.

Command-Line Parameter: good_practice

Numerical
These defects are errors relating to variables in your code; their values, data types, and usage. The
defects include:

• Mathematical operations
• Conversion overflow
• Operational overflow

For specific defects, see “Numerical Defects”.

Command-Line Parameter: numerical

Object Oriented
These defects are related to the object-oriented aspect of C++ programming. The defects highlight
class design issues or issues in the inheritance hierarchy.

The defects include:

• Data member not initialized or incorrectly initialized in constructor
• Incorrect overriding of base class methods
• Breaking of data encapsulation

For specific defects, see “Object Oriented Defects”.

Command-Line Parameter: object_oriented

Programming
These defects are errors relating to programming syntax. These defects include:

• Assignment versus equality operators
• Mismatches between variable qualifiers or declarations
• Badly formatted strings

For specific defects, see “Programming Defects”.

Command-Line Parameter: programming

3 Manage Results

3-24

Resource Management
These defects are related to file handling. The defects include:

• Unclosed file stream
• Operations on a file stream after it is closed

For specific defects, see “Resource Management Defects”.

Command-Line Parameter: resource_management

Static Memory
These defects are errors relating to memory usage when the memory is statically allocated. The
defects include:

• Accessing arrays outside their bounds
• Null pointers
• Casting of pointers

For specific defects, see “Static Memory Defects”.

Command-Line Parameter: static_memory

Security
These defects highlight places in your code which are vulnerable to hacking or other security attacks.
Many of these defects do not cause runtime errors, but instead point out risky areas in your code. The
defects include:

• Managing sensitive data
• Using dangerous or obsolete functions
• Generating random numbers
• Externally controlled paths and commands

For more details about specific defects, see “Security Defects”.

Command-Line Parameter: security

Tainted data
These defects highlight elements in your code which are from unsecured sources. Malicious attackers
can use input data or paths to attack your program and cause failures. These defects highlight
elements in your code that are vulnerable. Defects include:

• Use of tainted variables or pointers
• Externally controlled paths

For more details about specific defects, see “Tainted Data Defects”.

Command-Line Parameter: tainted_data

 Bug Finder Defect Groups

3-25

See Also

3 Manage Results

3-26

Troubleshooting Polyspace Access

4

Polyspace Access ETL and Web Server services do not start

Issue
You start the Polyspace Access services but after a moment, the ETL and Web Server services stop.
You might see a HTTP 403 error message in your web browser when you try to connect to Polyspace
Access.

Possible Cause: Hyper-V Network Configuration Cannot Resolve Local
Host Names
On Windows®, if you installed Polyspace Access inside a virtual machine (VM), that VM is managed by
Hyper-V. Depending on your network configuration, Hyper-V might not resolve local host names. The
Polyspace Access ETL and Polyspace Access Web Server services cannot connect to the host that
you specify with these host names.

To test whether Hyper-V can resolve host name myHostname on a machine that is connected to the
Internet, at the command line, enter:

docker run --rm -it alpine ping myHostname

If Hyper-V cannot resolve the host name, you get an error message.

Solution

Stop and restart the admin-docker-agent binary without using the --hostname option.

• If you are on a trusted network or you do not want to use the HTTPS protocol:

1 At the command-line, enter:

docker stop admin

admin-docker-agent --restart-gateway
2 In the Cluster Admin web interface, click Restart Apps.

• If you want to use the HTTPS protocol, generate certificates with a subject alternative name
(SAN) that includes the IP address of the cluster operator node on which the services are running.

1 Copy this configuration file to a text editor and save it on your machine as openssl.cnf.

Configuration file

[req]
req_extensions = v3_req
distinguished_name = req_distinguished_name
prompt = no

[req_distinguished_name]
countryName = US
stateOrProvinceName = yourState
organizationName = myCompany
organizationalUnitName = myOrganization
emailAddress = user@email.com
commonName = hostName

4 Troubleshooting Polyspace Access

4-2

[v3_req]
basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
subjectAltName = @alt_names

[alt_names]
DNS.1 = hostName
DNS.2 = fullyQualifiedDomainName
IP.1 = nodeIPAddress

hostName is the host name of the server that hosts Polyspace Access.
fullyQualifiedDomainName is the corresponding fully qualified domain name.
nodeIPAddress is the IP address of the node on which you run the admin-docker-agent
binary.

You do not need to edit the value of the other fields in the [req_distinguished_name]
section of openssl.cnf. Updating the value of these fields does not affect the configuration.

2 In the Cluster Dashboard, click Configure Nodes. The IP address listed in the Hostname
field corresponds to nodeIPAddress in the openssl.cnf file. If there is more than one node
listed, add an additional line in the [alt_names] section of openssl.cnf for each IP
address. For example:

[alt_names]
DNS.1 = hostName
DNS.2 = fullyQualifiedDomainName
IP.1 = nodeIPAddress
IP.2 = additionalNodeIPAddress

3 Generate a certificate signing request (CSR) by using your openssl.cnf configuration file.
At the command line, enter:

openssl req -new -out myReqest.csr -newkey rsa:4096 \
-keyout myKey.key -nodes -config openssl.cnf

The command outputs a private key file myKey.key and the file myRequest.csr.
4 To generate a signed certificate:

• If you use your organization's certificate authority, submit myRequest.csr to the
certificate authority. The certificate authority uses the file to generate a signed server
certificate. For instance, server_cert.cer.

• If you use self-signed certificates, at the command line, enter:

openssl x509 -req -days 365 -in myRequest.csr -signkey myKey.key \
-out self-cert.pem -extensions v3_req -extfile openssl.cnf

The command outputs self-signed certificate self-cert.pem.
5 Stop and restart the admin-docker-agent binary with this command:

Windows
PowerShell

./admin-docker-agent --restart-gateway `
--ssl-cert-file certFile1 `
--ssl-key-file keyFile `
--ssl-ca-file trustedStoreFile

Linux® ./admin-docker-agent --restart-gateway \
--ssl-cert-file certFile1 \
--ssl-key-file keyFile \
--ssl-ca-file trustedStoreFile

 Polyspace Access ETL and Web Server services do not start

4-3

https://en.wikipedia.org/wiki/Certificate_authority

certFile1 is the full path of the file you obtained in step 4.keyFile is the file you generated
in step 3. trustedStoreFile is the file you generated in step 4 if you used self-signed
certificates. Otherwise, it is the trust store file you use to configure HTTPS. See “Choose
Between HTTP and HTTPS Configuration for Polyspace Access” Save your changes.

6 In the Cluster Admin web interface, click Restart Apps.

4 Troubleshooting Polyspace Access

4-4

Contact Technical Support About Polyspace Access Issues
If you need support from MathWorks for Polyspace Access issues, go to this page and create a service
request. You need a MathWorks login and password to create a service request.

Before you contact MathWorks, gather this information.

• Operating system

To see information about the operating system of the machine where you install Polyspace access,
at the command line, enter:

Windows systeminfo | findstr /C:OS
Linux uname -a

• Polyspace Access version

Log into Polyspace Access, then at the top of the window click > About Polyspace. If
Polyspace Access is not yet installed or you cannot log into Polyspace Access, at the command
line, navigate to the folder where you unzipped the Polyspace Access installation image, and
enter:

Windows type VERSION
Linux cat VERSION

• License number

Log into Polyspace Access, then at the top of the window click > About Polyspace. If
Polyspace Access is not yet installed or you cannot log into Polyspace Access, contact your license
administrator to obtain your license number.

• Polyspace Access service logs

To generate logs for the different Polyspace Access services, at the command line, enter:

docker logs -f polyspace-access-web-server-main >> access-web-server.log 2>&1

docker logs -f polyspace-access-etl-main >> access-etl.log 2>&1

docker logs -f polyspace-access-db-main >> access-db.log 2>&1

docker logs -f issuetracker-server-main >> issuetracker-server.log 2>&1

docker logs -f issuetracker-ui-main >> issuetracker-ui.log 2>&1

docker logs -f usermanager-server-main >> usermanager-server.log 2>&1

docker logs -f admin >> admin.log 2>&1

docker logs -f gateway >> gateway.log 2>&1

docker logs -f usermanager-ui-main >> usermanager-ui.log 2>&1

docker logs -f usermanager-db-main >> usermanager-db.log 2>&1

 Contact Technical Support About Polyspace Access Issues

4-5

https://www.mathworks.com/support/contact_us.html?s_tid=doc2cs

docker logs -f polyspace-access >> polyspace-access.log 2>&1

docker logs -f issuetracker >> issuetracker.log 2>&1

docker logs -f usermanager>> usermanager.log 2>&1

Attach the log files to your service request. The commands to generate these logs are the same for
Windows and Linux.

• Polyspace Access web interface log

To generate a log for the Polyspace Access web interface, log into Polyspace Access. In the left
pane, click SUPPORT REPORT then Get support info. Attach the generated supportreport
file to your service request.

4 Troubleshooting Polyspace Access

4-6

Resolve -xml-annotations-description Errors
Issue
When you use the option -xml-annotations-description to apply custom annotations to your
Polyspace results, some custom annotations are not applied and you see warnings in the console
output or the desktop interface Output Summary.

Possible Solutions
Custom Annotation Not Found in Mapping

If you define a custom annotation syntax but you do not map it to the Polyspace annotation syntax,
Polyspace detects the custom annotation but does not apply it to the analysis results. You see a
warning similar to this warning in the console output or the Polyspace desktop interface Output
Summary.
Verifying sources ...
Verifying zero_div.c (1/1)
Warning: rule :50 from exampleCustomAnnotation not found in the mapping (XML file).
 Skipping the annotation

Solution

Check the <Mapping/> section of the XML file that you pass to the -xml-annotations-
description option. If the rule listed in the warning is not mapped to a Polyspace rule, add the
appropriate entry to map the rule. For instance, to map rule 50 from the preceding warning to
Polyspace coding rule MISRA C: 2012 Rule 8.4, add this entry in the <Mapping/> section:
<Result_Name_Mapping Rule_Identifier="50" Family="MISRA-C3" Result_Name="8.4"/>

Polyspace Annotations Do Not Apply to Current Code

If you define a custom annotation syntax and you map it to the Polyspace annotation syntax,
Polyspace might not apply some custom annotations to your source code. You see a warning similar to
this warning in the console output or the Polyspace desktop interface Output Summary.
Warning: These Polyspace annotations do not apply to the current code:
| In file D:\Polyspace\Examples\zero_div.c line 7, annotation MISRA-C3:8.4 with text
"Justified by annotation in source"
| In file D:\Polyspace\Examples\zero_div.c line 20, annotation MISRA-C3:8.4 with text
"Justified by annotation in source"
| Possible reasons:
| - Issue not detected with selected configuration options.
| - Issue is fixed.
| - Annotation syntax is incorrect

Solution

Check for these possible causes:

• The issue that the annotation addresses has been fixed in the source code. Polyspace detects the
custom annotation but ignores it.

• The issue that the annotation addresses was not detected by Polyspace with the analysis options
that you specified. For example, if the custom annotation addresses a MISRA C: 2012 coding
standard violation but Polyspace did not check for violations of this coding standard because
option Check MISRA C:2012 (-misra3) is not specified.

• The issue that the annotation addresses was detected but Polyspace could not match the custom
annotation to a corresponding Polyspace annotation. This indicates a syntax error in the

 Resolve -xml-annotations-description Errors

4-7

<Mapping/> section of the XML file that you pass to the -xml-annotations-description
option.

See Also
-xml-annotations-description

Related Examples
• “Define Custom Annotation Format” on page 2-28

4 Troubleshooting Polyspace Access

4-8

Configure Polyspace as You Code

5

Configure Polyspace as You Code Extension in Visual Studio
After installing the Polyspace as You Code analysis engine and Visual Studio extension, configure the
extension so that a Polyspace analysis runs smoothly when you save your code or explicitly start an
analysis. An analysis has run smoothly if results appear as expected, either as source code markers
with tooltips or in a list on the Results List pane.

To configure the extension, in Visual Studio, select Tools > Options. Specify the various settings on
the Polyspace node.

• The settings on the General subnode apply to any project in Visual Studio.
• The settings on the Project subnode apply to the project that is currently open.

All settings retain their current values when you reinstall the extension.

General Settings
Setting Description
Analysis launch mode Select whether Polyspace as You Code runs:

• Automatically(default): Analysis starts on each file save.
• Manually: User explicitly starts the analysis.

To start an analysis, right-click in the source code and select
Run Polyspace analysis.

Polyspace as You Code
installation folder

Polyspace as You Code installation folder. This field is read-only and
set at the time of installation.

If you see errors on the Output pane about starting the Polyspace
Connector, check if the folder still exists (and contains a Polyspace
as You Code installation).

Working directory for
extension

Folder where analysis results are stored. When you start an
analysis, a subfolder is created in this folder per Visual Studio
solution. Within a subfolder, a second subfolder is created per
project and then another per file.

For each file, a new run overwrites results of the previous run. If
the analysis fails for a given file, you can check the failed
subfolder for information useful for troubleshooting, such as the
options given to the analysis engine.

The default results folder is C:\TEMP\%USERNAME%\Polyspace.

5 Configure Polyspace as You Code

5-2

Setting Description
Polyspace Access
configuration > Polyspace
Access URL

URL of the Polyspace Access instance from which you get a
baseline.

After you obtain a baseline from Polyspace Access, subsequent runs
of Polyspace as You Code allow you to distinguish between new
results and results that were present in existing code.

See also “Baseline Polyspace as You Code Results in Visual Studio”
on page 5-41.

Project Settings
Build configuration

Setting Description
Get from solution(default) The analysis builds the solution, traces the build, and generates a

build options file. See “Get Build Configuration from Visual Studio
Solution” on page 5-25.

Get from build command
line

The analysis traces the build command that you specify and
generates a build options file. Specify:

• The build command in the setting Build command line
• The folder from which the build command must be launched in

the setting Working directory.

See “Get Build Configuration from Build Command” on page 5-26.
Get from JSON Compilation
Database

The analysis extracts the build configuration from the JSON
compilation database that you specify and generates a build options
file. See “Get Build Configuration from JSON Compilation
Database” on page 5-26.

Specify the path to the JSON file (typically named
compile_commands.json) in the setting Path to JSON file.

Get from Polyspace build
options file

The analysis uses manually specified options. Provide these options
in the options file that you specify in the setting Analysis options
file. See “Specify Analysis Options Manually” on page 5-27.

Build options file not
required

You do not have to specify Polyspace options related to your
building configuration. This is a basic option for simple projects.

The analysis uses the default Polyspace build options. So that the
analysis runs without errors, you typically should provide Polyspace
as You Code with the specificities of your build configuration.

 Configure Polyspace as You Code Extension in Visual Studio

5-3

Analysis configuration

Setting Description
Checkers file Path to a checkers configuration file.

To create this file, click Open. Enable the checkers that you want
and save the file.

See also “Configure Checkers for Polyspace as You Code in Visual
Studio” on page 5-61.

Analysis options file Path to an options file. The options file contains one Polyspace
analysis option per line. For example:

-D _WIN32
-termination-functions exit_handler

You typically do not need to specify additional options in an options
file. However, in some situations,you might want to use an options
file. For instance, if you want to manually specify Polyspace options
related to your build command, select Set manually for the setting
Build configuration and enter the options in an options file.

See also “Options Files for Polyspace Analysis” on page 5-22.
Import options from
Polyspace Desktop project
(*.psprj)

Import the analysis options and checkers configuration file from
existing Polyspace desktop project file. See “Import Analysis
Options from Polyspace Desktop Project” on page 5-28.

Polyspace Access project configuration

Setting Description
Use baseline from Polyspace
Access

Specify whether a baseline must be used and the project on
Polyspace Access that you get the baseline from. Enter the project
name in the Project path field.

See also “Baseline Polyspace as You Code Results in Visual Studio”
on page 5-41.

Show only new findings
compared to the results
baseline

Specify whether only new results must be shown. If you select this
option, results are compared with the baseline downloaded from
Polyspace Access and only new results are shown.

See also “Baseline Polyspace as You Code Results in Visual Studio”
on page 5-41.

5 Configure Polyspace as You Code

5-4

Expert configuration

Setting Description
Run analysis using scripts Run a script each time you save your code (or explicitly run

analysis). The script takes the path to the current file as the first
argument and the Working directory for extension as the second
argument.

For example, this simple Windows batch script analyzes the current
file and uses the default Polyspace build options:

set INSTALL_DIR=C:\Program Files\Polyspace as You Code\R2021a
set ANALYZE=%INSTALL_DIR%\bin\polyspace-bug-finder-access.exe
set SOURCES=%1
set RESULTS_FOLDER=%2

"%ANALYZE%" -sources %SOURCES% -results-dir %RESULTS_FOLDER%
IF %ERRORLEVEL% NEQ 0 EXIT 1

Use a script if, for instance, you switch between files from
components that have different build configurations or you use a
custom tool to setup your build environment.

If you enable this setting, all other extension settings are ignored.

Note The Polyspace as You Code extension does not check the exit
status of the commands in your script. Make sure your script checks
exit codes (for instance by using %ERRORLEVEL%) and returns a
meaningful exit status.

Analysis script Enter the full path to a script. The script can be written in any
language.

Each time you run Polyspace as You Code on file save or explicitly,
you run this script with two arguments: the full path to the current
file and the results folder.

 Configure Polyspace as You Code Extension in Visual Studio

5-5

Configure Polyspace as You Code Extension in Visual Studio
Code

After installing the Polyspace as You Code analysis engine and IDE extension, configure the extension
so that a Polyspace analysis runs smoothly when you save your code or explicitly start an analysis. An
analysis has run smoothly if results appear as expected, either as source code markers with tooltips
or in a list on the PROBLEMS pane.

To configure the extension, in Visual Studio Code, open the settings interface by pressing Ctrl + ,
(comma) and type polyspace in the settings search bar.

For each setting, you can specify a value that applies globally to all workspaces or folders that you
open in the Visual Studio editor. For some of the settings, you can also override the global
specification with a workspace-specific value.

• To specify global settings, enter the settings on the User tab.
• To override the global settings for the currently open workspace or folder, enter the settings on

the Workspace tab.

To reset a setting to its default value, click the icon on the left of the setting and select Reset
Setting. All settings retain their current values when you reinstall the extension.

Tip Type the Setting ID in the settings search bar to view only the settings related to that ID.

Analysis Engine
Setting ID: polyspace.analysisengine

These settings are mandatory.

5 Configure Polyspace as You Code

5-6

Setting Description Available Per Workspace?
Polyspace Installation Folder Root folder of the Polyspace as

You Code installation, for
instance, C:\Program Files
\Polyspace as You Code
\R2021a.

No

Result Folder Folder where analysis results
are stored. Each new run
overwrites results of the
previous run.

Yes

Analysis Launch Mode
Setting ID: polyspace.analysisoptions.analysislaunchmode

By default, Polyspace as You Code runs each time you save your code. You can choose to disable the
automatic runs.

Setting Description Available Per Workspace?
Analysis Options: Analysis
Launch Mode

Select when Polyspace as You
Code must run:

• Automatically (default):
The analysis must run on
each save.

• Manually: Choose to
explicitly start the analysis.
You can right-click a source
file and select Polyspace:
Analyze Current File (or
run the same command from
the Command Palette).

Yes

Analysis Setup
Setting ID: polyspace.analysisoptions.analysissetup

You can set up a Polyspace as You Code analysis through extension settings or override extension
settings and run a script instead. By default, the analysis uses extension settings.

 Configure Polyspace as You Code Extension in Visual Studio Code

5-7

Setting Description Available Per Workspace?
Analysis Options: Analysis
Setup

Select between manual setup
and script.

• Manual Setup (default):
Set up Polyspace as You
Code through extension
settings. Specify build-
related and other options
through the Manual Setup
group of settings.

• Script: Run a script each
time you save your code (or
right-click a source file and
select Polyspace: Analyze
Current File). The script
takes the path to the current
file as the first argument and
the results folder as the
second argument. All other
extension settings are
ignored.

Yes

Analysis Options > Manual Setup

Setting ID: polyspace.analysisoptions.manualsetup

Manual setup of the analysis involves specifying build options, checkers and other analysis options.
Extract build options from a Visual Studio Code build task or a JSON Compilation Database file, or
specify them explicitly in a build options file. Enable or disable checkers in a checkers selection
window. Specify all remaining analysis options explicitly in an options file.

5 Configure Polyspace as You Code

5-8

Setting Description Available Per Workspace?
Analysis Options > Manual
Setup: Build

Specification of build-related
Polyspace analysis options.
Options are:

• Build options file not
required (default): You do
not have to specify Polyspace
options related to building
your files. This is a basic
option for simple projects
where the default Polyspace
analysis options are
sufficient to compile the
files.

• Get from JSON
Compilation Database
file: The analysis must
create build options from a
JSON compilation database.
Specify the path to the
database file (typically
named
compile_commands.json)
in the setting Analysis
Options > Manual Setup >
Build Setting: JSON
Compilation Database
File.

Later, when you run
Polyspace: Analyze Build
in the Command Palette,
the polyspace-configure
command creates build-
related Polyspace analysis
options from this database
file using the option -
compilation-database.
Subsequent runs of
Polyspace as You code use
these options.

• Get from build task:
The analysis must extract
build options from a Visual
Studio Code build task. Use
a build task that performs a
complete build of all files in
your workspace. Specify the
build task name in the
setting Analysis Options >

Yes

 Configure Polyspace as You Code Extension in Visual Studio Code

5-9

Setting Description Available Per Workspace?
Manual Setup > Build
Setting: Build Task.

Later, when you run
Polyspace: Analyze Build
in the Command Palette,
the polyspace-configure
command runs on the
command underneath this
build task and creates
Polyspace analysis options.
Subsequent runs of
Polyspace as You code use
these options.

• Get from build
command: The analysis must
extract build options from a
build command. Make sure
that the command builds all
source files in your
workspace. Specify the build
command in the setting
Analysis Options >
Manual Setup > Build
Setting: Build Command.

Later, when you run
Polyspace: Analyze Build
in the Command Palette,
the polyspace-configure
command runs on the build
command and creates
Polyspace analysis options.
Subsequent runs of
Polyspace as You code use
these options.

• Get from Polyspace
build options file:
Provide the build options in
the options file that you
specify in the setting
Analysis Options >
Manual Setup > Build
Setting: Polyspace Build
Options File.

5 Configure Polyspace as You Code

5-10

Setting Description Available Per Workspace?
Analysis Options > Manual
Setup > Build Setting: Build
Command

Use this setting if you choose
Get from build command for
the setting Analysis Options >
Manual Setup: Build.

Specify the build command
name exactly as you would enter
on a command-line terminal or
console.

Use a build command that
performs a complete build of all
files in your workspace and not
an incremental build.

See “Get Build Configuration
from Build Command” on page
5-30

Yes

Analysis Options > Manual
Setup > Build Setting: Build
Task

Use this setting if you choose
Get from build task for the
setting Analysis Options >
Manual Setup: Build.

Specify the build task name. The
build task name is the name of a
command that runs when you
select Terminal > Run Task.
For more information on tasks,
see Visual Studio Code
documentation.

Use a build task that performs a
complete build of all files in
your workspace and not an
incremental build.

See “Get Build Configuration
from Build Task” on page 5-29.

Yes

 Configure Polyspace as You Code Extension in Visual Studio Code

5-11

https://code.visualstudio.com/docs/editor/tasks
https://code.visualstudio.com/docs/editor/tasks

Setting Description Available Per Workspace?
Analysis Options > Manual
Setup > Build Setting: JSON
Compilation Database File

Use this setting if you choose
Get from JSON
Compilation Database
File for the setting Analysis
Options > Manual Setup:
Build.

Specify the full path to a
database file (typically named
compile_commands.json).

See “Get Build Configuration
from JSON Compilation
Database” on page 5-30.

Yes

Analysis Options > Manual
Setup > Build Setting:
Polyspace Build Options File

Use this setting if you choose
Get from Polyspace Build
Options File for the setting
Analysis Options > Manual
Setup: Build.

Specify the full path to a
Polyspace build options file. The
options file is a text file with one
Polyspace analysis option per
line.

See also “Options Files for
Polyspace Analysis” on page 5-
22.

Yes

Analysis Options > Manual
Setup: Checkers File

Specify the full path to a
checkers configuration file.

To create this file, in the
Command Palette, run
Polyspace: Configure
Checkers. Enable the checkers
that you want and save the file.

See also “Configure Checkers
for Polyspace as You Code in
Visual Studio Code” on page 5-
64.

Yes

5 Configure Polyspace as You Code

5-12

Setting Description Available Per Workspace?
Analysis Options > Manual
Setup: Other Analysis
Options

Path to an options file. The
options file contains one
Polyspace analysis option per
line. For example:

-termination-functions exit_handler
-code-behavior-specifications /usr/jdoe/util/checkerModifiers.xml

You typically do not need to
specify additional options in an
options file. However, in some
situations,you might want to use
an options file. For instance, you
might want to modify some
checkers using an XML file that
you provide with the option -
code-behavior-
specifications.

See also “Options Files for
Polyspace Analysis” on page 5-
22.

Yes

Analysis Options > Script

Setting ID: polyspace.analysisoptions.scriptfile

 Configure Polyspace as You Code Extension in Visual Studio Code

5-13

Setting Description Available Per Workspace?
Analysis Options > Script:
Script File

Use this setting if you choose
Script for the setting Analysis
Options: Analysis Setup.

Enter the full path to a script.
The script can be written in any
language.

Each time you run Polyspace as
You Code on file save or
explicitly, you run this script
with two arguments: the full
path to the current file and the
Result Folder.

For example, this simple
Windows batch script analyzes
the current file and uses the
default Polyspace build options:

set INSTALL_DIR=C:\Program Files\Polyspace as You Code\R2021a
set ANALYZE=%INSTALL_DIR%\bin\polyspace-bug-finder-access.exe
set SOURCES=%1
set RESULTS_FOLDER=%2

"%ANALYZE%" -sources %SOURCES% -results-dir %RESULTS_FOLDER%
IF %ERRORLEVEL% NEQ 0 EXIT 1

Use a script if, for instance, you
switch between files from
components that have different
build configurations or you use
a custom tool to setup your
build environment.

If you enable this setting, all
other extension settings are
ignored.

Note The Polyspace as You
Code extension does not check
the exit status of the commands
in your script. Make sure your
script checks exit codes (for
instance by using %ERRORLEVEL
%) and returns a meaningful exit
status.

Yes

5 Configure Polyspace as You Code

5-14

Baseline
Setting ID: polyspace.baseline

These options are essential only if you want to obtain a baseline from Polyspace Access. After you
obtain a baseline from Polyspace Access, subsequent runs of Polyspace as You Code allow you to
distinguish between new results and results that were present in existing code. See also “Baseline
Polyspace as You Code Results in Visual Studio Code” on page 5-45.

Setting Description Available Per Workspace?
Baseline: Polyspace Access
Url

Specify Polyspace Access URL. No

Baseline: Polyspace Access
Login

Specify the user name you use
to log in to Polyspace Access.

Later, when you run Polyspace:
Get Baseline in the Command
Palette, you are prompted for
the password corresponding to
this user name.

No

Baseline: Project Specify a project on Polyspace
Access that you use as baseline.

Later, when you run Polyspace:
Get Baseline in the Command
Palette, the polyspace-
access command runs with the
-download option to download
the baseline results from the
latest run of this project.
Subsequent runs of Polyspace as
You Code use this baseline.

Yes

Baseline: Show Only New
Findings

Suppress findings that are
already present in the Polyspace
Access project that you use as
baseline.

If you select this setting, you
must also select Baseline: Use
Baseline.

Yes

 Configure Polyspace as You Code Extension in Visual Studio Code

5-15

Setting Description Available Per Workspace?
Baseline: Use Baseline Use Polyspace Access project as

baseline.

Results that are already present
in Polyspace Access show
associated review information.
If a result has review
information that indicates a
justified status, for instance, No
action planned, the result is
not shown at all.

In addition, if you select the
setting Baseline: Show Only
New Findings, results that are
already present in Polyspace
Access are not shown at all.

Yes

Trace
Setting ID: polyspace.trace.server

The option is useful only for troubleshooting by technical support. You typically do not need to use
this option.

Setting Description Available Per Workspace?
Trace: Server Whether the log must show

messages related to
communication between the
internal server that hosts
analysis results and the IDE.
This option is only useful for
troubleshooting internal
communication issues.

Yes

5 Configure Polyspace as You Code

5-16

Configure Polyspace as You Code Plugin in Eclipse
This topic describes how to configure the Polyspace as You Code plugin in Eclipse™. For Polyspace
desktop products such as Polyspace Bug Finder, see the topic "Polyspace Analysis in Eclipse" in the
Polyspace Bug Finder documentation.

After installing the Polyspace as You Code analysis engine and Eclipse plugin, configure the plugin so
that a Polyspace analysis runs smoothly when you save your code or explicitly start an analysis. An
analysis has run smoothly if results appear as expected, either as source code markers with tooltips
or in a list on the Results List pane.

To configure the plugin, in Eclipse, select items from the Polyspace menu.

• To specify options that are applicable to any project in Eclipse, select Polyspace > Preferences.
• To specify options that are applicable to a single project only, select Polyspace > Configure

Project.

The name of the project that you configure is listed in the title bar of the Configure Project
window.

All settings retain their current values when you reinstall the plugin.

Preferences
Setting Description
Polyspace as You Code installation folder Root folder of the Polyspace as You Code

installation, for instance, C:\Program Files
\Polyspace as You Code\R2021a.

Analysis launch mode Choose one of these options to trigger the
Polyspace as You Code analysis:

• Automatically(default): The analysis starts
each time you save a file.

• Manually: To start an analysis, right-click the
source file and select Run Polyspace as You
Code.

Results folder Folder where analysis results are stored. Each
new run overwrites results of the previous run.

The default results folder is:

• Windows: Documents
\Polyspace_Workspace
\EclipseProjects where Documents is
the Documents folder in Windows.

• Linux: ~/Polyspace_Workspace/
EclipseProjects

 Configure Polyspace as You Code Plugin in Eclipse

5-17

Setting Description
Polyspace Access URL URL of the Polyspace Access instance from which

you get a baseline.

After you obtain a baseline from Polyspace
Access, subsequent runs of Polyspace as You
Code allow you to distinguish between new
results and results that were present in existing
code.

See also “Baseline Polyspace as You Code Results
in Eclipse” on page 5-50.

Show only new findings compared to the
results baseline

Specify whether only new results must be shown.
If you select this option, results are compared
with the baseline downloaded from Polyspace
Access and only new results are shown.

See also “Baseline Polyspace as You Code Results
in Eclipse” on page 5-50.

Configure Project
Build configuration

Setting Description
Build options file not required You do not have to specify Polyspace options

related to your building configuration. This is a
basic option for simple projects.

The analysis uses the default Polyspace build
options. So that the analysis runs without errors,
you typically should provide Polyspace as You
Code with the specificities of your build
configuration.

Get from Eclipse project (default) The analysis extracts the build configuration from
the Eclipse project and generates a build options
file.

See “Get Build Configuration from Eclipse
Project” on page 5-34.

Get from Polyspace build options file The analysis uses build options that you manually
specify in an options file. Provide the full path to
the options file.

5 Configure Polyspace as You Code

5-18

Setting Description
Get from JSON Compilation Database file The analysis extracts the build configuration from

the JSON compilation database that you specify
and generates a build options file. See “Get Build
Configuration from JSON Compilation Database”
on page 5-35.

Specify the full path to the JSON file (typically
named compile_commands.json). Then click
Generate build configuration.

Get from build command The analysis traces the build command that you
specify and generates a build options file.

Specify the build command and the folder from
which the build command must be launched in
setting Build command working folder. Then
click Generate build configuration. See “Get
Build Configuration from Build Command” on
page 5-34.

Other Analysis settings

Setting Description
Checkers file Path to a checkers configuration file.

To create this file, click the folder icon. Enable
the checkers that you want and save the file.

See also “Configure Checkers for Polyspace as
You Code in Eclipse” on page 5-57.

Analysis options file Path to an options file. The options file contains
one Polyspace analysis option per line. For
example:

-D _WIN32
-termination-functions exit_handler

You typically do not need to specify additional
options in an options file. However, in some
situations,you might want to use an options file.
For instance, if you want to manually specify
Polyspace options related to your build command,
select None for build setting and enter the
options in an options file.

See also “Options Files for Polyspace Analysis” on
page 5-22.

Import options from Polyspace desktop
project (*.psrpj)

Import the analysis options and checkers
configuration file from existing Polyspace desktop
project file. See “Import Analysis Options from
Polyspace Desktop Project” on page 5-36.

 Configure Polyspace as You Code Plugin in Eclipse

5-19

Polyspace Access settings

Setting Description
Use baseline from Polyspace Access Specify whether to get a baseline for Polyspace

results.

If you enable this setting a specify a Project
path, click Download baseline from Polyspace
Access to download a baseline.

After you obtain a baseline from Polyspace
Access, subsequent runs of Polyspace as You
Code allow you to distinguish between new
results and results that were present in existing
code.

See also “Baseline Polyspace as You Code Results
in Eclipse” on page 5-50.

Project path Path of project in Polyspace Access Project
Explorer that you get the baseline from.

5 Configure Polyspace as You Code

5-20

Expert configuration

Setting Description
Run script for Polyspace analysis Run a script each time you save your code (or

explicitly run analysis). The script takes the path
to the current file as the first argument and the
Results folder as the second argument.

For example, this simple Windows batch script
analyzes the current file and uses the default
Polyspace build options:

set INSTALL_DIR=C:\Program Files\Polyspace as You Code\R2021a
set ANALYZE=%INSTALL_DIR%\bin\polyspace-bug-finder-access.exe
set SOURCES=%1
set RESULTS_FOLDER=%2

"%ANALYZE%" -sources %SOURCES% -results-dir %RESULTS_FOLDER%
IF %ERRORLEVEL% NEQ 0 EXIT 1

Use a script if, for instance, you switch between
files from components that have different build
configurations or you use a custom tool to setup
your build environment.

If you enable this setting, all other extension
settings are ignored.

Note The Polyspace as You Code extension does
not check the exit status of the commands in your
script. Make sure your script checks exit codes
(for instance by using %ERRORLEVEL%) and
returns a meaningful exit status.

Analysis script Enter the full path to a script. The script can be
written in any language.

Each time you run Polyspace as You Code on file
save or explicitly, you run this script with two
arguments: the full path to the current file and
the results folder.

 Configure Polyspace as You Code Plugin in Eclipse

5-21

Options Files for Polyspace Analysis
To adapt the Polyspace analysis configuration to your development environment and requirements,
you have to modify the default configuration through command-line options such as -compiler.
Options files are a convenient way to collect multiple options together and reuse them across
projects.

What are Options Files
Options files are text files with one option per line. For instance, the content of an options file can
look like this:

Options for Polyspace analysis
Options apply to all projects in Controller module
-compiler visual16.x
-D _WIN32
-code-behavior-specifications "Z:\utils\polyspace\forbiddenfunctions.xml"

The lines starting with # represent comments for better readability. These lines are ignored during
analysis.

Specifying Options Files
Depending on the platform where you run analysis, you can specify an options file in one of the
following ways.

Command Line

At the command line (and in scripts), specify an options file as argument to the option -options-
file.

For instance, instead of the command:

polyspace-bug-finder -sources file.c -compiler visual16.x -D _WIN32
 -code-behavior-specifications "Z:\utils\polyspace\forbiddenfunctions.xml"

Save this content:

-compiler visual16.x
-D _WIN32
-code-behavior-specifications "Z:\utils\polyspace\forbiddenfunctions.xml"

In a file options.txt in the path Z:\utils\polyspace\ and shorten the command to:

polyspace-bug-finder -sources file.c -options-file "Z:\utils\polyspace\options.txt"

You can use options files with these Polyspace commands:

• polyspace-bug-finder

5 Configure Polyspace as You Code

5-22

• polyspace-bug-finder-server
• polyspace-bug-finder-access
• polyspace-code-prover
• polyspace-code-prover-server

IDEs

If you run Polyspace as You Code using IDE extensions, you typically specify three groups of options
differently:

• Build options:

You can extract build options from existing artifacts such as build commands and JSON
compilation database, or collect all build options in an options file. You can specify this options file
in the appropriate extension setting:

• Visual Studio Code: Analysis Options > Manual Setup > Build Setting : Polyspace Build
Options File

• Visual Studio: Get from Polyspace build options file (in section Build Configuration)
• Eclipse: Get from Polyspace build options file (in section Build Configuration)

• Checkers:

You can specify checkers using a checkers selection wizard. For details, see “Setting Checkers in
Polyspace as You Code”.

• Other remaining options:

All remaining options can be collected in a second options file that goes into the appropriate
extension setting:

• Visual Studio Code: Analysis Options > Manual Setup: Other Analysis Options
• Visual Studio: Analysis configuration > Analysis options file
• Eclipse: Analysis options file

If you use options files both for build options and other options, the result is the same as specifying a
single options file with the other options appended to the build options. See also “Specifying Multiple
Options Files” on page 5-24.

For more information on IDE extensions, see:

• “Configure Polyspace as You Code Extension in Visual Studio” on page 5-2
• “Configure Polyspace as You Code Extension in Visual Studio Code” on page 5-6
• “Configure Polyspace as You Code Plugin in Eclipse” on page 5-17

Polyspace User Interface

In the user interface of the Polyspace desktop products, you typically do not require an options file.
Most options can be specified on the Configuration pane in the Polyspace user interface.

 Options Files for Polyspace Analysis

5-23

However, some options are available only at the command line and do not have a counterpart in the
user interface. If you have to specify multiple command-line-only options, you can collect them in an
options file, for instance commandLineStyleOptions.txt. On the Configuration pane, under the
Advanced Settings node, you can enter the following in the Other field:

-options-file commandLineStyleOptions.txt

Specifying Multiple Options Files
You can specify multiple options files in an analysis. For instance, at the command line, you can enter:

polyspace-bug-finder -sources file.c -options-file opts1.txt -options-file opts2.txt

When you specify multiple options files in an analysis, all options from the options files are appended
to the analysis command. For instance, the preceding command has the same effect as using a single
options file that places the content of opts1.txt above opts2.txt.

If an option appears in multiple files with conflicting arguments, the argument in the last options file
prevails. For instance, in the preceding command, if opts1.txt contains:

-checkers all
-misra3 all

And opts2.txt contains:

-misra3 single-unit-rules

The analysis uses only the argument single-unit-rules for the option -misra3.

You can use this stacking of options files to override options. For instance, suppose you use a read-
only options file that applies to your entire team but want to override some of the options in the file.
You can override the options by using a second options file that you create and specifying your
options file after the team-wide options file.

You can also specify the option -options-file within an options file and aggregate several options
files in this way.

See Also

Related Examples
• “Run Polyspace as You Code from Command Line and Export Results” on page 6-14

5 Configure Polyspace as You Code

5-24

Generate Build Options for Polyspace as You Code Analysis in
Visual Studio

Polyspace as You Code checks the source code file that is currently active in your Visual Studio® IDE
for bugs and coding standards violations.

So that the analysis runs without errors, provide Polyspace as You Code with the specificities of your
build configuration, such as data type sizes and compiler macro definitions. To provide your build
configuration information, you can:

• Configure Polyspace as You Code to extract the build configuration information from your Visual
Studio solution, build command, or JSON compilation database.

• Manually specify analysis options that emulate your build configuration in an options file. See
“Options Files for Polyspace Analysis” on page 5-22.

• Import the analysis options from a Polyspace desktop product project file.

Configure Polyspace as You Code to Extract Build Configuration
To extract your build configuration information from the Visual Studio solution, build command, or
JSON compilation database:

1 Go to Tools > Options.
2 Select the appropriate Build configuration option on the Project subnode of the Polyspace

node. See “Configure Polyspace as You Code Extension in Visual Studio” on page 5-2.

The Build configuration option that you select applies to all the projects in the Visual Studio
solution.

Polyspace extracts the build information and generates an options file that the Polyspace as You Code
analysis engine uses in subsequent analyses. The file contains analysis options that emulate your
build configuration. Make sure that the build completes successfully before your extract the build
information.

The generated options file is stored in the .polyspace-configure folder under the
workingDirectory/projectName folder or one of its subfolders. The workingDirectory path is
the Working directory of extension folder path that you specify in the General options of the
Polyspace extension. The projectName is the name of the project that contains the files you are
currently analyzing.

When you configure Polyspace as You Code to extract your build configuration information from the
Visual Studio solution, build command, or JSON compilation database, the software extracts the build
configuration only if:

• You start an analysis and Polyspace cannot find a generated options file in the .polyspace-
configure folder for the project that contains the currently analyzed file.

• You explicitly regenerate an options file, for instance after you make changes to your build
configuration. See “Update Generated Build Options File” on page 5-27.

Get Build Configuration from Visual Studio Solution

To extract your build configuration information from the Visual Studio solution:

 Generate Build Options for Polyspace as You Code Analysis in Visual Studio

5-25

1 Go to Tools > Options.
2 Select Get from solution on the Project subnode of the Polyspace node. See “Configure

Polyspace as You Code Extension in Visual Studio” on page 5-2.

The Build configuration option that you select applies to all the projects in the Visual Studio
solution.

Polyspace builds your solution, traces the build to extract the configuration information, and
generates an options file.

Get Build Configuration from Build Command

To extract your build configuration information from your build command:

1 Go to Tools > Options.
2 Select Get from build command line on the Project subnode of the Polyspace node. See

“Configure Polyspace as You Code Extension in Visual Studio” on page 5-2.
3 Specify your build command in the Build command line field. The build command that you

specify must perform a full build. For instance:

"C:\Program Files\Polyspace as You Code\R2021a\sys\tcc\win64\tcc.exe" -g -
o output dll.c fib.c hello_dll.c hello_win.c

4 Specify the full path of the folder where Polyspace runs the build command in the Working
directory field. For instance:

C:\Program Files\Polyspace as You Code\R2021a\sys\tcc\win64\examples

The Build configuration option that you select applies to all the projects in the Visual Studio
solution.

Polyspace runs your build command, traces the build to extract the configuration information, and
generates an options file.

Get Build Configuration from JSON Compilation Database

If your build system supports the generation of a JSON compilation database file, use this setting. The
file contains compiler calls for all the translation units in your project. See JSON compilation
database.

To extract your build configuration information from the JSON compilation database:

1 Generate a JSON compilation database file. For an example of how to generate this file, see
“Create Polyspace Options File from JSON Compilation Database”.

If you use a JSON compilation database that was not generated on your local machine, make sure
that the paths listed in the file are accessible from the location where you run Polyspace as You
Code.

2 Go to Tools > Options.
3 Select Get from JSON Compilation Database on the Project subnode of the Polyspace node.

See “Configure Polyspace as You Code Extension in Visual Studio” on page 5-2.
4 Specify the full path to the JSON compilation database file that you generated in step 1 in the

Path to JSON file field.

5 Configure Polyspace as You Code

5-26

https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html

The Build configuration option that you select applies to all the projects in the Visual Studio
solution.

Polyspace extracts the build configuration information from the compilation database and generates
an options file.

If you make changes to your build configuration, regenerate the compilation database file before you
update the generated options file.

Update Generated Build Options File

If you make changes to your build configuration, for instance if you add a source file to your project
or workspace or rename an existing file, update the generated options file to reflect those changes.
Before you update the options file, make sure that your build completes successfully with the new
configuration.

To update the options file, from the project context menu in the Solution Explorer, select Generate
Polyspace build configuration.

If you extract your build information from a JSON compilation database file, regenerate the
compilation database before you update the build options file.

See also “Troubleshoot Failed Analysis or Unexpected Results in Polyspace as You Code” on page 5-
83.

Specify Analysis Options Manually
Use this setting if:

• You know the details of your build system and you want to specify the Polyspace analysis options
that emulate your build configuration in an options file. See “Options Files for Polyspace Analysis”
on page 5-22.

For a list of available analysis options, see “Polyspace as You Code Analysis Engine Options”.
• You reuse a Polyspace options file that you or someone else on your team has configured for your

build system.

If you reuse an options file that was not configured or generated on your local machine, make sure
that the paths listed in the file are accessible from the location where you run Polyspace as You
Code.

To specify an analysis options file:

1 Go to Tools > Options.
2 Select Get from Polyspace build options file on the Project subnode of the Polyspace node.

See “Configure Polyspace as You Code Extension in Visual Studio” on page 5-2.
3 Specify the full path to the options file in the Build options file field.

The Polyspace as You Code analysis engine uses the specified options file in subsequent analyses.

If you make changes to your build configuration, edit the options file to reflect those changes. See
“Specify Target Environment and Compiler Behavior” on page 8-2.

 Generate Build Options for Polyspace as You Code Analysis in Visual Studio

5-27

Import Analysis Options from Polyspace Desktop Project
If you configure an analysis in the Polyspace desktop product, you can use the information from the
resulting Polyspace desktop PSPRJ file to configure your Polyspace as You Code analysis.

To import the analysis options from a Polyspace desktop PSPRJ file:

1 Go to Tools > Options.
2 Select Build options file not required on the Project subnode of the Polyspace node. See

“Configure Polyspace as You Code Extension in Visual Studio” on page 5-2.

This selection allows you to leave the Build options file field empty.
3 Click Import from Polyspace desktop project and select the PSPRJ file that you import from.

Polyspace generates an options file and an XML checkers activation file on page 5-61, and populates
the corresponding Analysis configuration fields. The Polyspace as You Code analysis engine uses
these files in subsequent analyses.

If you make changes to your build configuration, edit the options file to reflect those changes. See
“Specify Target Environment and Compiler Behavior” on page 8-2.

See Also

Related Examples
• “Configure Polyspace as You Code Extension in Visual Studio” on page 5-2
• “Configure Checkers for Polyspace as You Code in Visual Studio” on page 5-61
• “Baseline Polyspace as You Code Results in Visual Studio” on page 5-41

5 Configure Polyspace as You Code

5-28

Generate Build Options for Polyspace as You Code Analysis in
Visual Studio Code

Polyspace as You Code checks the source code file that is currently active in your Visual Studio Code
editor for bugs and coding standards violations.

So that the analysis runs without errors, provide Polyspace as You Code with the specificities of your
build configuration, such as data type sizes and compiler macro definitions. To provide your build
configuration information, you can:

• Configure Polyspace as You Code to extract the build configuration information from your build
task, build command, or JSON compilation database.

• Manually specify analysis options that emulate your build configuration in an options file. See
“Options Files for Polyspace Analysis” on page 5-22.

• Import the analysis options from a Polyspace desktop product project file.

Configure Polyspace as You Code to Extract Build Configuration
To extract your build configuration information from the build task, build command, or JSON
compilation database:

1 Open the Visual Studio Code settings by pressing Ctrl+, (comma).

Enter polyspace.analysisoptions in the settings search bar and set Polyspace > Analysis
Options: Analysis Setup to Manual setup.

2 Set the appropriate Polyspace > Analysis Options > Manual Setup: Build options and fill out
the corresponding Build Setting field.

See “Configure Polyspace as You Code Extension in Visual Studio Code” on page 5-6.
3 Open the Command Palette (Ctrl+Shift+P) and enter Polyspace: Analyze Build.

Polyspace extracts the build information and generates an options file that the Polyspace as You Code
analysis engine uses in subsequent analyses. The file contains analysis options that emulate your
build configuration.

The generated options file is stored in the .polyspace-configure folder under the
workingDirectory/projectName folder or one of its subfolders.

The workingDirectory path is the Polyspace > Analysis Engine: Result Folder path that you
specify in the Polyspace as You Code extension settings. The projectName is the name of the top-
level folder in the EXPLORER that contains the files that you are currently analyzing.

Get Build Configuration from Build Task

Visual Studio Code enables you to define tasks so that you can run an external tool from your code
editor. See Integrate with External Tools via Tasks.

If you define a custom task that calls your compiler to perform a full build of your project, Polyspace
can extract your build configuration from this build task.

1 Open the Visual Studio Code settings by pressing Ctrl+, (comma).

 Generate Build Options for Polyspace as You Code Analysis in Visual Studio Code

5-29

https://code.visualstudio.com/docs/editor/tasks

Enter polyspace.analysisoptions in the settings search bar.
2 Set these Polyspace > Analysis Options settings to the values listed in the table.

Setting Value
Analysis Setup Manual setup
Manual Setup: Build Get from build task
Manual Setup >
Build Setting: Build
Task

Specify the name of the build task. This corresponds to the
"label" field of the task definition in the tasks.json file. The
task that you specify must perform a full build.

Polyspace supports the use of only these Visual Studio Code
predefined variables in task definitions:

• ${workspaceFolder}
• ${workspaceFolderBasename}
• ${cwd}

3 Open the Command Palette (Ctrl+Shift+P) and enter Polyspace: Analyze Build.

Polyspace runs the build command specified by the task, traces the build to extract the configuration
information, and generates an options file.

Get Build Configuration from Build Command

To extract your build configuration information from your build command:

1 Open the Visual Studio Code settings by pressing Ctrl+, (comma).

Enter polyspace.analysisoptions in the settings search bar.
2 Set these Polyspace > Analysis Options settings to the values listed in the table.

Setting Value
Analysis Setup Manual setup
Manual Setup: Build Get from build command
Manual Setup >
Build Setting: Build
Command

Specify your build command, for instance:

"C:\Program Files\Polyspace as You Code\R2021a\sys
\tcc\win64\tcc.exe" -g -o output dll.c fib.c
hello_dll.c hello_win.c

The command that you specify must perform a full build
3 Open the Command Palette (Ctrl+Shift+P) and enter Polyspace: Analyze Build.

Polyspace runs your build command, traces the build to extract the configuration information, and
generates an options file.

Get Build Configuration from JSON Compilation Database

If your build system supports the generation of a JSON compilation database file, use this setting. The
file contains compiler calls for all the translation units in your project. See JSON compilation
database.

5 Configure Polyspace as You Code

5-30

https://code.visualstudio.com/docs/editor/variables-reference
https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html

To extract your build configuration information from the JSON compilation database:

1 Generate a JSON compilation database file. For an example of how to generate this file, see
“Create Polyspace Options File from JSON Compilation Database”.

If you use a JSON compilation database that was not generated on your local machine, make sure
that the paths listed in the file are accessible from the location where you run Polyspace as You
Code.

2 Open the Visual Studio Code settings by pressing Ctrl+, (comma).

Enter polyspace.analysisoptions in the settings search bar.
3 Set these Polyspace > Analysis Options settings to the values listed in the table.

Setting Value
Analysis Setup Manual setup
Manual Setup: Build Get from JSON Compilation Database file
Manual Setup >
Build Setting: JSON
Compilation
Database File

Specify the full path to the file that you generated in step 1. The file
is typically named compile_commands.json.

4 Open the Command Palette (Ctrl+Shift+P) and enter Polyspace: Analyze Build.

Polyspace extracts the build configuration information from the compilation database and generates
an options file.

Update Generated Build Options File

If you make changes to your build configuration, for instance if you add a source file to your project
or workspace or rename an existing file, update the generated options file to reflect those changes.
Before you update the options file, make sure that your build completes successfully with the new
configuration.

To update the options file, Open the Command Palette (Ctrl+Shift+P) and enter Polyspace:
Analyze Build.

If you extract your build information from a JSON compilation database file, regenerate the
compilation database before you update the build options file.

See also “Troubleshoot Failed Analysis or Unexpected Results in Polyspace as You Code” on page 5-
83.

Specify Analysis Options Manually
Use this setting if:

• You know the details of your build system and you want to specify the Polyspace analysis options
that emulate your build configuration in an options file. See “Options Files for Polyspace Analysis”
on page 5-22.

For a list of available analysis options, see “Polyspace as You Code Analysis Engine Options”.
• You reuse a Polyspace options file that you or someone else on your team has configured for your

build system.

 Generate Build Options for Polyspace as You Code Analysis in Visual Studio Code

5-31

If you reuse an options file that was not configured or generated on your local machine, make sure
that the paths listed in the file are accessible from the location where you run Polyspace as You
Code.

To specify an analysis options file:

1 Open the Visual Studio Code settings by pressing Ctrl+, (comma).

Enter polyspace.analysisoptions in the settings search bar.
2 Set these Polyspace > Analysis Options settings to the values listed in the table.

Setting Value
Analysis Setup Manual setup
Manual Setup: Build Get from Polyspace build options file
Manual Setup >
Build Setting:
Polyspace Build
Options File

Specify the full path to the Polyspace options file.

The Polyspace as You Code analysis engine uses the specified options file in subsequent analyses.

If you make changes to your build configuration, edit the options file to reflect those changes. See
“Specify Target Environment and Compiler Behavior” on page 8-2.

Import Analysis Options from Polyspace Desktop Project
If you configure an analysis in the Polyspace desktop product, you can use the information from the
resulting Polyspace desktop PSPRJ file to configure your Polyspace as You Code analysis.

To import the analysis options from a Polyspace desktop PSPRJ file, open a terminal in Visual Studio
Code and enter this command:
polyspace-checkers-selection -import-options-from-psprj pathToPsprjFile

The polyspace-checkers-selection binary is available under the polyspace/bin folder in
your Polyspace as You Code installation folder.

The pathToPsprjFile path is the full path of the PSPRJ file.

Polyspace generates an options file (analysis_options.txt) and an XML checkers activation file
on page 5-64 (checkers_activation_file.xml). The generated files are stored in the import
folder in the same location as the PSPRJ file.

To complete the configuration of the Polyspace as You Code analysis:

1 Open the Visual Studio Code settings by pressing Ctrl+, (comma).

Enter polyspace.analysisoptions in the settings search bar.
2 Set these Polyspace > Analysis Options settings to the values listed in the table.

Setting Value
Analysis Setup Manual setup

5 Configure Polyspace as You Code

5-32

Setting Value
Manual Setup: Build Build options file not required

This setting ignores the file specified in the Build Setting:
Polyspace Build Options File field.

Manual Setup:
Checkers File

Full file path of checkers_activation_file.xml

Manual Setup:
Other Analysis
Options

Full file path of analysis_options.txt

The Polyspace as You Code analysis engine uses these files in subsequent analyses.

If you make changes to your build configuration, edit the options file to reflect those changes. See
“Specify Target Environment and Compiler Behavior” on page 8-2.

See Also

Related Examples
• “Configure Polyspace as You Code Extension in Visual Studio Code” on page 5-6
• “Configure Checkers for Polyspace as You Code in Visual Studio Code” on page 5-64
• “Baseline Polyspace as You Code Results in Visual Studio Code” on page 5-45

 Generate Build Options for Polyspace as You Code Analysis in Visual Studio Code

5-33

Generate Build Options for Polyspace as You Code Analysis in
Eclipse

Polyspace as You Code checks the source code of the file that is currently active in your Eclipse IDE
for bugs and coding standards violations.

So that the analysis runs without errors, provide Polyspace as You Code with the specificities of your
build configuration, such as data type sizes and compiler macro definitions. To provide your build
configuration information, you can:

• Configure Polyspace as You Code to extract the build configuration information from your Eclipse
project, build command, or JSON compilation database.

• Manually specify analysis options that emulate your build configuration in an options file. See
“Options Files for Polyspace Analysis” on page 5-22.

• Import the analysis options from a Polyspace desktop product project file.

Configure Polyspace as You Code to Extract Build Configuration
To extract your build configuration information from the Eclipse project, build command, or JSON
compilation database:

1 Go to Polyspace > Configure Project.
2 Select the appropriate Build configuration option. See “Configure Polyspace as You Code

Plugin in Eclipse” on page 5-17.

Get Build Configuration from Eclipse Project

To extract your build configuration information from your Eclipse project:

1 Go to Polyspace > Configure Project.
2 Select Get from Eclipse project. See “Configure Polyspace as You Code Plugin in Eclipse” on

page 5-17.

Each time you start an analysis, Polyspace extracts the build configuration information from the
project toolchain and generates an options file. The Polyspace analysis engine uses that options file in
the subsequent analysis.

To view the details of the toolchain configuration:

1 Select a project in the Project Explorer and go to Project > Properties.
2 Under the C/C++ General node, select Paths and symbols and Preprocessor Include Paths,

Macros, etc.

Get Build Configuration from Build Command

To extract your build configuration information from your build command:

1 Go to Polyspace > Configure Project.
2 Select Get from build command line and specify your build command. See “Configure

Polyspace as You Code Plugin in Eclipse” on page 5-17.

The build command that you specify must perform a full build. For instance:

5 Configure Polyspace as You Code

5-34

"C:\Program Files\Polyspace as You Code\R2021a\sys\tcc\win64\tcc.exe" -g -
o output dll.c fib.c hello_dll.c hello_win.c

3 Specify the full path of the folder where Polyspace runs the build command in the Build
command working folder field. For instance:

C:\Program Files\Polyspace as You Code\R2021a\sys\tcc\win64\examples
4 Click Generate build configuration.

Polyspace runs your build command, traces the build to extract the configuration information, and
generates an options file. The Polyspace as You Code analysis engine uses the generated options file
in subsequent analyses.

The generated options file is stored in the .polyspace-configure folder under the
workingDirectory/projectName folder or one of its subfolders. The workingDirectory path is
the Results folder path that you specify in the Polyspace > Preferences. The projectName is the
name of the project that contains the files you are currently analyzing.

Get Build Configuration from JSON Compilation Database

If your build system supports the generation of a JSON compilation database file, use this setting. The
file contains compiler calls for all the translation units in your project. See JSON compilation
database.

To extract your build configuration information from the JSON compilation database:

1 Generate a JSON compilation database file. For an example of how to generate this file, see
“Create Polyspace Options File from JSON Compilation Database”.

If you use a JSON compilation database that was not generated on your local machine, make sure
that the paths listed in the file are accessible from the location where you run Polyspace as You
Code.

2 Go to Polyspace > Configure Project.
3 Select Get from JSON Compilation Database file and specify the full path to the JSON

compilation database file that you generated in step 1. See “Configure Polyspace as You Code
Plugin in Eclipse” on page 5-17.

4 Click Generate build configuration.

Polyspace extracts the build configuration information from the compilation database and generates
an options file. The Polyspace as You Code analysis engine uses the generated options file in
subsequent analyses.

The generated options file is stored in the .polyspace-configure folder under the
workingDirectory/projectName folder or one of its subfolders. The workingDirectory path is
the Results folder path that you specify in the Polyspace > Preferences. The projectName is the
name of the project that contains the files you are currently analyzing.

Update Generated Build Options File

If you make changes to your build configuration, for instance if you add a source file to your project
or workspace or rename an existing file, update the generated options file to reflect those changes.
Before you update the options file, make sure that your build completes successfully with the new
configuration.

 Generate Build Options for Polyspace as You Code Analysis in Eclipse

5-35

https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html

To update the options file, select Polyspace > Generate Build Configuration. You do not need to
update the options file if you extract your build from an Eclipse project.

If you extract your build information from a JSON compilation database file, regenerate the
compilation database before you update the build options file.

See also “Troubleshoot Failed Analysis or Unexpected Results in Polyspace as You Code” on page 5-
83.

Specify Analysis Options Manually
Use this setting if:

• You know the details of your build system and you want to specify the Polyspace analysis options
that emulate your build configuration in an options file. See “Options Files for Polyspace Analysis”
on page 5-22.

For a list of available analysis options, see “Polyspace as You Code Analysis Engine Options”.
• You reuse a Polyspace options file that you or someone else on your team has configured for your

build system.

If you reuse an options file that was not configured or generated on your local machine, make sure
that the paths listed in the file are accessible from the location where you run Polyspace as You
Code.

To specify an analysis options file:

1 Go to Polyspace > Configure Project.
2 Select Get from Polyspace build options file and specify the full path to the options file. See

“Configure Polyspace as You Code Plugin in Eclipse” on page 5-17.

The Polyspace as You Code analysis engine uses the options file that you specify in subsequent
analyses.

If you make changes to your build configuration, edit the options file to reflect those changes. See
“Specify Target Environment and Compiler Behavior” on page 8-2.

Import Analysis Options from Polyspace Desktop Project
If you configure an analysis in the Polyspace desktop product, you can use the information from the
resulting Polyspace desktop PSPRJ file to configure your Polyspace as You Code analysis.

To import the analysis options from a Polyspace desktop PSPRJ file:

1 Go to Polyspace > Configure Project.
2 Select Build options file not required. See “Configure Polyspace as You Code Plugin in

Eclipse” on page 5-17.

This selection allows you to leave the Get from Polyspace build options file field empty.
3 Click Import options from Polyspace desktop project and select the PSPRJ file that you

import from.

5 Configure Polyspace as You Code

5-36

Polyspace generates an options file and an XML checkers activation file on page 5-57, and populates
the corresponding fields with the paths to the generated files. The Polyspace as You Code analysis
engine uses these files in subsequent analyses.

If you make changes to your build configuration, edit the options file to reflect those changes. See
“Specify Target Environment and Compiler Behavior” on page 8-2.

See Also

Related Examples
• “Configure Polyspace as You Code Plugin in Eclipse” on page 5-17
• “Configure Checkers for Polyspace as You Code in Eclipse” on page 5-57
• “Baseline Polyspace as You Code Results in Eclipse” on page 5-50

 Generate Build Options for Polyspace as You Code Analysis in Eclipse

5-37

Generate Build Options for Polyspace as You Code Analysis at
the Command Line

Polyspace as You Code checks your code for bugs and coding standards violations while you work in
your IDE or code editor.

So that the analysis runs without errors, provide Polyspace as You Code with the specificities of your
build configuration, such as data type sizes and compiler macro definitions. To provide your build
configuration information, you can:

• Use the polyspace-configure binary to extract the build configuration information from your
build command or JSON compilation database.

• Manually specify analysis options that emulate your build configuration in an options file. See
“Options Files for Polyspace Analysis” on page 5-22.

• Import the analysis options from a Polyspace desktop product project file.

Use polyspace-configure to Generate Build Options File
The polyspace-configure binary enables you to extract the build configuration information from a
build command or a JSON compilation database file. The binary uses the extracted information to
generate a build options file which contains a set of options that emulate your build configuration.

polyspace-configure is available with your Polyspace as You Code installation, in the
polyspaceAsYouCodeRoot/polyspace/bin folder, where polyspaceAsYouCodeRoot is your
Polyspace as You Code installation folder.

Get Build Configuration from Build Command

To extract the build configuration information from your build command, provide a build command
that performs a full build. For instance, if you use make on Linux to build your project, use this
command:
polyspace-configure \
 -no-sources -allow-overwrite \
 -output-options-file path/To/buildOptions.txt \
 -merge-common-options make -B

Polyspace runs your build command, traces the build to extract the configuration information, and
generates buildOptions.txt inside path/To. For more information about the polyspace-
configure options, see polyspace-configure.

Use the generated options file in subsequent analyses of source files from your project. For instance:
polyspace-bug-finder-access -sources file.c -options-file path/To/buildOptions.txt

Get Build Configuration from JSON Compilation Database

If your build system supports the generation of a JSON compilation database file, use this workflow.

The compilation database file contains compiler calls for all the translation units in your project. See
JSON compilation database.

To extract your build configuration information from the JSON compilation database:

5 Configure Polyspace as You Code

5-38

https://clang.llvm.org/docs/JSONCompilationDatabase.html

1 Generate a JSON compilation database file. For an example of how to generate this file, see
“Create Polyspace Options File from JSON Compilation Database”. The generated file is typically
named compile_commands.json.

If you use a JSON compilation database that was not generated on your local machine, make sure
that the paths listed in the file are accessible from the location where you run Polyspace as You
Code.

2 Pass the compilation database file to polyspace-configure. For instance:

polyspace-configure \
 -no-sources -allow-overwrite \
 -output-options-file path/To/buildOptions.txt \
 -merge-common-options \
-compilation-database otherPath/To/compile_commands.json

Polyspace extracts the build configuration information from the compilation database and generates
an options file. For more information about the polyspace-configure options, see polyspace-
configure

Use the generated options file in subsequent analyses of source files from your project. For instance:
polyspace-bug-finder-access -sources file.c -options-file path/To/buildOptions.txt

Update Generated Build Options File

If you make changes to your build configuration, for instance if you add a source file to your project
or workspace or rename an existing file, update the generated options file to reflect those changes.
Before you update the options file, make sure that your build completes successfully with the new
configuration.

To update the options file, rerun the command that you used to generate the file and specify the same
set of options you used.

If you extract your build information from a JSON compilation database file, regenerate the
compilation database before you update the build options file.

Specify Analysis Options Manually
Use this workflow if:

• You know the details of your build system and you want to specify the Polyspace analysis options
that emulate your build configuration in an options file. See “Options Files for Polyspace Analysis”
on page 5-22.

For a list of available analysis options, see “Polyspace as You Code Analysis Engine Options”.
• You reuse a Polyspace options file that you or someone else on your team has configured for your

build system.

If you reuse an options file that was not configured or generated on your local machine, make sure
that the paths listed in the file are accessible from the location where you run Polyspace as You
Code.

If you make changes to your build configuration, edit the options file to reflect those changes. See
“Specify Target Environment and Compiler Behavior” on page 8-2.

 Generate Build Options for Polyspace as You Code Analysis at the Command Line

5-39

Import Analysis Options from Polyspace Desktop Project
If you configure an analysis in the Polyspace desktop product, you can use the information from the
resulting Polyspace desktop PSPRJ file to configure your Polyspace as You Code analysis.

To import the analysis options from a Polyspace desktop PSPRJ file, use this command:
polyspace-checkers-selection -import-options-from-psprj pathToPsprjFile

The polyspace-checkers-selection binary is available under the polyspace/bin folder in
your Polyspace as You Code installation folder.

The pathToPsprjFile path is the full path of the PSPRJ file.

Polyspace generates an options file (analysis_options.txt) and an XML checkers activation file
on page 5-68 (checkers_activation_file.xml). The generated files are stored in the import
folder in the same location as the PSPRJ file.

Use the generated options file and checkers activation file in subsequent analyses of source files from
your project. For instance:
polyspace-bug-finder-access -sources file.c \
-options-file path/To/import/analysis_options.txt \
-checkers-activation-file path/To/import/checkers_activation_file.xml

If you make changes to your build configuration, edit the options file (analysis_options.txt) to
reflect those changes. See “Specify Target Environment and Compiler Behavior” on page 8-2.

See Also
polyspace-bug-finder-access | polyspace-configure

Related Examples
• “Options Files for Polyspace Analysis” on page 5-22
• “Configure Checkers for Polyspace as You Code at the Command Line” on page 5-68
• “Baseline Polyspace as You Code Results on Command Line” on page 5-53

5 Configure Polyspace as You Code

5-40

Baseline Polyspace as You Code Results in Visual Studio
For more efficient bug fixing, you can baseline the results of a Polyspace as You Code analysis with
previous results. When you baseline the results, you compare them against the results of a previous
run and focus on new results only or on unreviewed results only. You baseline Polyspace as You Code
results using previous Polyspace Bug Finder Server results that you download from Polyspace Access.

What Baselined Results Look Like
If you baseline Polyspace as You Code results using Polyspace Bug Finder Server results that you
downloaded from Polyspace Access, you can see the following benefits:

• Results that have a justified Status on Polyspace Access (No Action Planned, Justified, or Not a
Defect) are no longer shown.

• Results that have a non-justified Status on Polyspace Access carry over all review information to
the Polyspace Results List pane in Visual Studio. If a result is reviewed in Polyspace Access and
marked as such, one of the following is true:

• The Status is different from Unreviewed.
• The Severity is different from Unset.
• The Comment is not blank.

 Baseline Polyspace as You Code Results in Visual Studio

5-41

For instance, the fact that the Float division by zero defect has associated review information
indicates that the defect is also present in the baseline. In Polyspace Access, the defect has been
reviewed and assigned a Status of To fix.

You can also open the Polyspace Access project used as baseline in a web browser. In Visual
Studio, right-click the project on the Solution Explorer pane and select Show project in
Access.

• If you specify the Polyspace as You Code extension setting Show only new findings compared
to the results baseline, you see only results that are new in the current run. That way, you can
focus only on results that explicitly occurred because of the changes you made since the last
Polyspace Server run.

5 Configure Polyspace as You Code

5-42

Baselining Steps
To use Polyspace Bug Finder Server results as baseline for a Polyspace as You Code analysis, follow
the steps below. Once a baseline is downloaded, if you choose to point to the baseline, each
subsequent run, whether on file save or on-demand, uses the baseline.

Step 1: Identify Project to Use as Baseline

First, identify a project in Polyspace Access that you want to use as baseline. The project must
contain results of a Polyspace Bug Finder Server analysis on files that you will analyze in Polyspace as
You Code.

Copy the path to the project for use in the Visual Studio Code extension settings. To copy this path:

1 Open the Polyspace Access web interface in a web browser.
2 On the Project Explorer pane, right-click the project and select Copy Project Path to

Clipboard.

Step 2: Refer to Project from Polyspace as You Code

Next, refer to the Polyspace Access project from the Polyspace as You Code extension settings in
Visual Studio.

1 Open the extension settings.

To open the settings, select Tools > Options. The Polyspace as You Code extension settings
appear under the Polyspace node.

2 Specify on the General node the Polyspace Access URL, that is, the URL of the server that
hosts Polyspace Access. For instance, https://my-access-url:9443/.

 Baseline Polyspace as You Code Results in Visual Studio

5-43

3 Specify these settings on the Project node:

• Use baseline from Polyspace Access: Select this option to use the project on Polyspace
Access as baseline.

• Project path: The path to the project in Polyspace Access that you want to use as baseline.
You previously copied this path from the Polyspace Access web interface.

• Show only new findings compared to the results baseline: Select this option to suppress
results that are already present in the project in Polyspace Access.

Step 3: Download Baseline

Explicitly download the Polyspace Access result to use as baseline.

1 Right-click the project on the Solution Explorer pane and select Download baseline from
Polyspace Access.

2 Enter the username and password that you use to log in to Polyspace Access. The baseline
download begins.

To follow the progress of download, select View > Output and from the dropdown on the top, select
Polyspace. Wait for the message:

Baseline downloaded successfully for Access project ProjectName

After download, subsequent runs use the baseline. To disable baseline usage, disable the extension
setting Use baseline from Polyspace Access.

See Also

More About
• “Configure Polyspace as You Code Extension in Visual Studio” on page 5-2
• “Run Polyspace as You Code in Visual Studio and Review Results” on page 6-2

5 Configure Polyspace as You Code

5-44

Baseline Polyspace as You Code Results in Visual Studio Code
For more efficient bug fixing, you can baseline the results of a Polyspace as You Code analysis using
previous results. When you baseline the results, you compare them against the results of a previous
run and focus on new results only or on unreviewed results only. You baseline Polyspace as You Code
results using previous Polyspace Bug Finder Server results that you download from Polyspace Access.

What Baselined Results Look Like
If you baseline Polyspace as You Code results using Polyspace Bug Finder Server results that you
downloaded from Polyspace Access, you can see the following benefits:

• Results that have a justified Status on Polyspace Access (No Action Planned, Justified, or Not a
Defect) are no longer shown.

• Results that have a non-justified Status on Polyspace Access carry over all review information to
the PROBLEMS pane in Visual Studio Code.

For instance, the word [baseline] next to the result below shows that the Float division by
zero defect is also present in the baseline. In Polyspace Access, the defect has been reviewed and
assigned a Status of To fix.

 Baseline Polyspace as You Code Results in Visual Studio Code

5-45

If a Polyspace as You Code result also appears in the baseline, you can open the result on
Polyspace Access in a web browser directly from Visual Studio Code. Click the source code token
with a Polyspace as You Code result (wavy red underlining). Then, click the bulb icon that appears
and select Open Polyspace Access project associated with finding.

• If you specify the Polyspace as You Code extension setting Show Only New Findings, you see
only results that are new in the current run. That way, you can only focus on results that explicitly
occurred because of the changes you made since the last Polyspace Server run.

Baselining Steps
To use Polyspace Bug Finder Server results as baseline for a Polyspace as You Code analysis, follow
the steps below. Once a baseline is downloaded, if you choose to point to the baseline, each
subsequent run, whether on file save or on-demand, uses the baseline.

Step 1: Identify Project to Use as Baseline

First, identify a project in Polyspace Access that you want to use as baseline. The project must
contain results of a Polyspace Bug Finder Server analysis on files that you will analyze in Polyspace as
You Code.

Copy the path to the project for use in the Visual Studio Code extension settings. To copy this path:

5 Configure Polyspace as You Code

5-46

1 Open the Polyspace Access web interface in a web browser.
2 On the Project Explorer pane, right-click the project and select Copy Project Path to

Clipboard.

Step 2: Refer to Project from Polyspace as You Code

Next, refer to the Polyspace Access project from the Polyspace as You Code extension settings in
Visual Studio Code.

1 Open the extension settings.

To open the settings, select View > Extensions and then the icon next to Polyspace as
You Code. Select Extension Settings.

2 Specify these settings on the User tab:

• Baseline: Polyspace Access Url: The URL of the server that hosts Polyspace Access. For
instance, https://my-access-url:9443/.

• Baseline: Polyspace Access Login: The username that you use to log in to Polyspace
Access.

 Baseline Polyspace as You Code Results in Visual Studio Code

5-47

3 Specify these settings on the Workspace tab:

• Baseline: Project: The path to the project in Polyspace Access that you want to use as
baseline. You previously copied this path from the Polyspace Access web interface.

• Baseline: Use Baseline: Select this option to use the project on Polyspace Access as
baseline.

• Baseline: Show Only New Findings: Select this option to suppress results that are already
present in the project in Polyspace Access.

Step 3: Download Baseline

Explicitly download the Polyspace Access result to use as baseline.

1 Select View > Command Palette and then enter Polyspace: Get Baseline.
2 Enter the password that you use to log in to Polyspace Access. The baseline download begins.

To follow the progress of download, select View > Output and from the dropdown on the upper
right, select Polyspace as You Code. Wait for the message:

Baseline download completed!

After download, subsequent runs use the baseline. To disable baseline usage, disable the extension
setting Baseline: Use Baseline.

5 Configure Polyspace as You Code

5-48

See Also

More About
• “Configure Polyspace as You Code Extension in Visual Studio” on page 5-2
• “Run Polyspace as You Code in Visual Studio Code and Review Results” on page 6-6

 Baseline Polyspace as You Code Results in Visual Studio Code

5-49

Baseline Polyspace as You Code Results in Eclipse
For more efficient bug fixing, you can baseline the results of a Polyspace as You Code analysis with
previous results. When you baseline the results, you compare them against the results of a previous
run and focus on new results only or on unreviewed results only. You baseline Polyspace as You Code
results using previous Polyspace Bug Finder Server results that you download from Polyspace Access.

What Baselined Results Look Like
If you baseline Polyspace as You Code results using Polyspace Bug Finder Server results that you
downloaded from Polyspace Access, you can see the following benefits:

• Results that have a justified Status on Polyspace Access (No Action Planned, Justified, or Not a
Defect) are no longer shown.

• Results that have a non-justified Status on Polyspace Access carry over all review information to
the Polyspace Results List pane in Eclipse. If a result is reviewed in Polyspace Access and
marked as such, one of the following is true:

• The Status is different from Unreviewed.
• The Severity is different from Unset.
• The Comment is not blank.

• If you specify the Polyspace as You Code plugin setting Show only new findings compared to
the results baseline, you see only results that are new in the current run. That way, you can only

5 Configure Polyspace as You Code

5-50

focus on results that explicitly occurred because of the changes you made since the last Polyspace
Server run.

Baselining Steps
To use Polyspace Bug Finder Server results as baseline for a Polyspace as You Code analysis, follow
the steps below. Once a baseline is downloaded, if you choose to point to the baseline, each
subsequent run, whether on file save or on-demand, uses the baseline.

Step 1: Identify Project to Use as Baseline

First, identify a project in Polyspace Access that you want to use as baseline. The project must
contain results of a Polyspace Bug Finder Server analysis on files that you will analyze in Polyspace as
You Code.

Copy the path to the project for use in the Visual Studio Code extension settings. To copy this path:

1 Open the Polyspace Access web interface in a web browser.
2 On the Project Explorer pane, right-click the project and select Copy Project Path to

Clipboard.

Step 2: Refer to Project from Polyspace as You Code

Next, refer to the Polyspace Access project from the Polyspace as You Code plugin settings in Eclipse.

1 Select Polyspace > Preferences. Specify the following information:

• Polyspace Access URL: The URL of the server that hosts Polyspace Access. For instance,
https://my-access-url:9443/.

 Baseline Polyspace as You Code Results in Eclipse

5-51

• Show only new findings compared to the results baseline: Select this option to suppress
results that are already present in the project in Polyspace Access.

2 Select Polyspace > Configure Project. Specify the following information:

• Use baseline from Polyspace Access: Select this option to use the project on Polyspace
Access as baseline.

• Project path: The path to the project in Polyspace Access that you want to use as baseline.
You previously copied this path from the Polyspace Access web interface.

Step 3: Download Baseline

Explicitly download the Polyspace Access result to use as baseline.

1 The first time you configure the plugin settings, click Download baseline from Polyspace
Access to also download the baseline.

To download an updated baseline later, select Polyspace > Download Results Baseline. This
menu item is available only if you configure the extension settings to use a baseline.

2 Enter the username and password that you use to log in to Polyspace Access. The baseline
download begins.

To follow the progress of download, close the project settings and select Window > Show View >
Console. Wait for the popup:

The baseline was successfully downloaded.

After download, subsequent runs use the baseline. To disable baseline usage, disable the plugin
setting Use baseline from Polyspace Access.

See Also

More About
• “Configure Polyspace as You Code Plugin in Eclipse” on page 5-17
• “Run Polyspace as You Code in Eclipse and Review Results” on page 6-10

5 Configure Polyspace as You Code

5-52

Baseline Polyspace as You Code Results on Command Line
For more efficient bug fixing, you can baseline the results of a Polyspace as You Code analysis with
previous results. When you baseline the results, you compare them against the results of a previous
run and focus on new results only or on unreviewed results only. You baseline Polyspace as You Code
results using previous Polyspace Bug Finder Server results that you download from Polyspace Access.

What Baselined Results Look Like
The effect of baselining depends on whether you export results to the console or JSON format
(SARIF). For more details on the formats, see polyspace-results-export.

Console Output

Results that have a justified Status on Polyspace Access (No Action Planned, Justified, or Not a
Defect) are no longer shown in the console output.

JSON Output

In the following statements, obj represents the JSON object that is exported from the Polyspace
results.

 Baseline Polyspace as You Code Results on Command Line

5-53

• If a result is new and not already present in Polyspace Access, the corresponding property
obj.runs[0].results[n].baselineState is set to "new":

"baselineState" : "new"

Otherwise, the property is set to "unchanged".
• Results carry over their review information (Status, Severity and additional notes) from

Polyspace Access to the corresponding properties in obj.runs[0].results[n].properties.

For instance, without a baseline, these properties are:

"severity" : "Unset",
"status" : "Unreviewed",
"comment" : ""

With a baseline, the severity can be different from "Unset", the status different from
"Unreviewed", and so on.

• Results that have a justified Status on Polyspace Access (No Action Planned, Justified, or Not a
Defect) appear with the property obj.runs[0].results[n].properties.justified set to
true:

"justified" : true

Baselining Steps
To use Polyspace Bug Finder Server results as baseline for a Polyspace as You Code analysis, follow
the steps below.

Step 1: Identify Project to Use as Baseline
First, identify a project in Polyspace Access that you want to use as baseline. The project must
contain results of a Polyspace Bug Finder Server analysis on files that you will analyze in Polyspace as
You Code.

Copy the path to the project that you want to use as baseline. To copy this path:

1 Open the Polyspace Access web interface in a web browser.
2 On the Project Explorer pane, right-click the project and select Copy Project Path to

Clipboard.

5 Configure Polyspace as You Code

5-54

Step 2: Download Baseline
Next, download the baseline information from the Polyspace Access project. For instance, in a
terminal, enter the following:

polyspace-access -host hostname -download projectPath -output-folder-path downloadFolder

Here:

• hostname is the name of the Polyspace Access server.
• projectPath is the path to the project on Polyspace Access that is used as baseline. You copied

this name from the Polyspace Access web interface.
• downloadFolder is the folder to which you download the baseline information.

After download, the folder contains three databases: results (ps_results.psbf), source files
(ps_sources.db), and review information (ps_comments.db). You cannot open these results in the
Polyspace user interface or use them in any other way other than as baseline for Polyspace as You
Code runs.

The folder also contains a file ps_access_info.json that contains information about the Access
project and run ID that was used as baseline. If required, you can write a script to compare this run
ID with the latest run ID of the project on Polyspace Access and run this script at certain points in
your workflow to make sure that you are always using the latest run of the project as baseline.

Step 3: Use Baseline
Once the baseline information is downloaded, refer to the downloaded baseline information in
command-line runs using the option -baseline-folder. In a terminal, enter the following:

#Linux command
polyspace-bug-finder-access -sources filename -baseline-folder downloadFolder \

 Baseline Polyspace as You Code Results on Command Line

5-55

-results-dir resultsFolder

#DOS command

polyspace-bug-finder-access.exe -sources filename -baseline-folder downloadFolder ^
-results-dir resultsFolder

Here:

• filename is the current file being analyzed.
• downloadFolder is the folder to which you previously downloaded the baseline information.
• resultsFolder is the folder for storing analysis results.

When you export the analysis results using the polyspace-results-export command, for
instance:

polyspace-results-export -format console -results-dir resultsFolder

You can see the effects of using the baseline. See “What Baselined Results Look Like” on page 5-53.

See Also
polyspace-bug-finder-access | polyspace-results-export

More About
• “Run Polyspace as You Code from Command Line and Export Results” on page 6-14

5 Configure Polyspace as You Code

5-56

Configure Checkers for Polyspace as You Code in Eclipse
In this section...
“Select Checkers and Coding Rules” on page 5-57
“Modify Checker Behavior” on page 5-60

You can check for various types of defects and coding rule violations by using Polyspace as You Code
in Eclipse. See “Defects” and “Coding Standards”. The default analysis checks for a subset of defects.
See “Polyspace Bug Finder Defects Checkers Enabled by Default” on page 5-73. To check for
nondefault defects and coding rule violations, configure Polyspace as You Code extension in your IDE.

To configure checkers, create a checkers file, and then specify the checkers file in the Configure
Project window. For equivalent workflows in the Polyspace desktop and server, see “Prepare Checkers
Configuration for Polyspace Bug Finder Analysis” (Polyspace Bug Finder Server).

Select Checkers and Coding Rules
To select coding rule checkers and nondefault defect checkers, click Polyspace > Configure
Project. Configure the checker selection in the Configure Project window.

 Configure Checkers for Polyspace as You Code in Eclipse

5-57

Create or Modify Checkers Configuration

Create a new selection or modify an existing selection of checkers and coding rules in the Checker
selection window. Save the new configuration in a reusable checkers file.

1
In the Configure Project window, open the Checkers Selection window by clicking .

5 Configure Polyspace as You Code

5-58

2 To create a new selection, in the Checkers Selection window, select the defect and the coding
rule checkers that you want to activate. To modify an existing selection, click Browse, navigate
to the existing checkers file and then modify the checkers selection.

You can also select predefined categories of defect checkers such as All, Default, High,
Medium, Low, and CWE. See“Classification of Defects by Impact” on page 3-11. Similarly, you
can activate a predefined set of coding rules that are defined by their corresponding standards.

• When selecting Guidelines > Software Complexity checkers, review their thresholds. If the
default thresholds are not acceptable, specify a suitable threshold in the Threshold column.
See Check Guidelines (-guidelines).

• When selecting Custom rules, review the Pattern and Convention for the rules. See Check
custom rules (-custom-rules).

3 Save the selection as a reusable checkers XML file by clicking Save Changes. After you click
Finish, the path to the new checkers XML file is specified in the field Checkers file in the
Configure Project window.

 Configure Checkers for Polyspace as You Code in Eclipse

5-59

Import Checkers Configuration from Desktop Project

You can import checkers and coding rule configuration from a Polyspace desktop project (*.psprj)
file. In the Configure Project window, click Import options from Polyspace desktop project
(*.psprj). Browse to the folder containing the project file and specify the project file. The checkers
configuration in the desktop project is extracted as a checkers file, which is specified in the field
Checkers file. The analysis options of the desktop project are extracted as an options file which is
specified in the field Analysis options file.

Modify Checker Behavior
To modify the default behavior of Bug Finder defect checkers and coding rules, use analysis options.
For a list of analysis options that modify the default checker behavior, see “Modify Default Behavior of
Bug Finder Checkers” (Polyspace Bug Finder Server).

To specify analysis options in Polyspace as You Code:

• Append the analysis options in the options file specified in the field Analysis options file. An
options file is a text file with one analysis option for each line. For instance, to add the analysis
options -code-behavior-specifications and Effective boolean types (-boolean-
types), in the options file, append these lines:

-code-behavior-specifications file1
-boolean-types boolean1_t,boolean2_t

• If you do not have an option file, create an option file that contains the necessary options. Specify
the path to the new options file in the field Analysis options file. See “Options Files for Polyspace
Analysis” on page 5-22.

See Also

More About
• “Polyspace Bug Finder Defects Checkers Enabled by Default” on page 5-73
• “Options Files for Polyspace Analysis” on page 5-22
• “Checkers Deactivated in Polyspace as You Code Default Analysis” on page 5-80
• “Modify Default Behavior of Bug Finder Checkers” (Polyspace Bug Finder Server)

5 Configure Polyspace as You Code

5-60

Configure Checkers for Polyspace as You Code in Visual Studio

In this section...
“Select Checkers and Coding Rules” on page 5-61
“Modify Checker Behavior” on page 5-63

You can check for various types of defects and coding rule violations by using Polyspace as You Code
in Visual Studio. See “Defects” and “Coding Standards”.The default analysis checks for a subset of
defects. See “Polyspace Bug Finder Defects Checkers Enabled by Default” on page 5-73. To check
for nondefault defects and coding rule violations, configure Polyspace as You Code extension in your
IDE.

To configure checkers, create a checkers file, and then specify the checkers file in the Options
window. For equivalent workflows in the Polyspace desktop and server, see “Prepare Checkers
Configuration for Polyspace Bug Finder Analysis” (Polyspace Bug Finder Server).

Select Checkers and Coding Rules
To select coding rule checkers and nondefault defect checkers, click Tools > Options. On the
Polyspace > Project node, specify checkers configuration in the Analysis configuration section.

 Configure Checkers for Polyspace as You Code in Visual Studio

5-61

Create or Modify Checkers Configuration

Create a new selection or modify an existing selection of checkers and coding rules in the Checker
selection window. Save the new configuration in a reusable checkers file.

1 In the Polyspace > Project node, open the Checkers selection window by clicking Open.

2 To create a new selection, in the Checkers Selection window, select the defect and the coding
rule checkers that you want to activate. To modify an existing selection, click Browse, navigate
to the existing checkers file and then modify the checkers selection.

You can also activate predefined categories of defect checkers such as All, Default, High,
Medium, Low, and CWE. See “Classification of Defects by Impact” on page 3-11. Similarly, you
can activate predefined set of coding rules that are defined by their corresponding standards.

• When selecting Guidelines > Software Complexity checkers, review their thresholds. If the
default thresholds are not acceptable, specify a suitable threshold in the Threshold column.
See Check Guidelines (-guidelines).

5 Configure Polyspace as You Code

5-62

• When selecting Custom rules, review the Pattern and Convention for the rules. See Check
custom rules (-custom-rules).

3 Save the selection as a reusable checkers XML file by clicking Save Changes. After you click
Finish, the path to the new checkers XML file is specified in the field Checkers file in the
Polyspace > Project node.

Import Checkers Configuration from Desktop Project

To import checkers and coding rule selection from a Polyspace desktop project (*.psprj) file, in the
Polyspace > Project node, click Import options from Polyspace desktop project (*.psprj).
Browse to the folder containing the project file and specify the project file. The checkers
configuration in the desktop project is extracted as a checkers file, which is specified in the field
Checkers file. The analysis options of the desktop project are extracted as an options file which is
specified in the field Analysis options file.

Modify Checker Behavior
To modify the default behavior of Bug Finder defect checkers and coding rules, use analysis options.
For a list of analysis options that modify the default checker behavior, see “Modify Default Behavior of
Bug Finder Checkers” (Polyspace Bug Finder Server).

To specify analysis options in Polyspace as You Code:

• Append the analysis options in the options file specified in the field Analysis options file. An
options file is a text file with one analysis option for each line. For instance, to add the analysis
options -code-behavior-specifications and Effective boolean types (-boolean-
types), in the options file, append these lines:

-code-behavior-specifications file1
-boolean-types boolean1_t,boolean2_t

• If you do not have an option file, create an option file that contains the necessary options. Specify
the path to the new options file in the field Analysis options file. See “Options Files for Polyspace
Analysis” on page 5-22.

See Also

More About
• “Polyspace Bug Finder Defects Checkers Enabled by Default” on page 5-73
• “Options Files for Polyspace Analysis” on page 5-22
• “Checkers Deactivated in Polyspace as You Code Default Analysis” on page 5-80
• “Modify Default Behavior of Bug Finder Checkers” (Polyspace Bug Finder Server)

 Configure Checkers for Polyspace as You Code in Visual Studio

5-63

Configure Checkers for Polyspace as You Code in Visual Studio
Code

In this section...
“Configure Checkers in Checkers File” on page 5-64
“Modify Checkers Behavior” on page 5-66

You can check for various types of defects and coding rule violations by using Polyspace as You Code
in Visual Studio Code. See “Defects” and “Coding Standards”. The default analysis checks for a
subset of defects. See “Polyspace Bug Finder Defects Checkers Enabled by Default” on page 5-73.
To check for nondefault defects and coding rule violations, configure Polyspace as You Code extension
in your IDE.

To configure checkers, create a checkers file, and then specify the checkers file in extension settings.
For equivalent workflows in the Polyspace desktop and server, see “Prepare Checkers Configuration
for Polyspace Bug Finder Analysis” (Polyspace Bug Finder Server).

Configure Checkers in Checkers File
To configure checkers, first select checkers in a checkers file. Then specify the checkers file in the
Settings pane.

Step 1: Select Checkers and Coding Rules

To enable nondefault defects and coding rules, you might:

• Create or modify a checkers file.
• Import a checkers selection from a Polyspace desktop project.

Create or Modify Checkers File

Create a new selection or modify an existing selection of checkers and coding rules in the Checker
selection window. Save the new configuration in a reusable checkers file. To use an existing checkers
file without modifying the checkers selection, specify a path to it in the Settings pane. See “Step
2:Specify Checkers File in Extension Settings” on page 5-66.

1 To open the Checkers selection user interface, in the command palette, run Polyspace:
Configure Checkers.

5 Configure Polyspace as You Code

5-64

2 To create a new selection, in the Checkers Selection window, select the defect and the coding
rule checkers that you want to activate. To modify an existing selection, click Browse, navigate
to the existing checkers file and then modify the checkers selection.

You can also activate predefined categories of defect checkers such as All, Default, High,
Medium, Low, and CWE. See “Classification of Defects by Impact” on page 3-11. Similarly, you
can activate predefined set of coding rules that are defined by their corresponding standards.

• When selecting Guidelines > Software Complexity checkers, review their thresholds. If the
default thresholds are not acceptable, specify a suitable threshold in the Threshold column.
See Check Guidelines (-guidelines).

• When selecting Custom rules, review the Pattern and Convention for the rules. See Check
custom rules (-custom-rules).

3 Save the selection as a reusable checkers XML file by clicking Save Changes. You can later
reuse the checkers XML file as an input in the field Checkers file. Click Finish.

 Configure Checkers for Polyspace as You Code in Visual Studio Code

5-65

Import Checkers Configuration from desktop Project

If you have a Polyspace desktop project file (*.psprj), you can import checkers configuration from
it. In the Visual Studio Code terminal, run:

#Linux command
polyspace-checkers-selection -checkers-selection-output-file PathToOutputFile.json \
-import-options-from-psprj PathToProject.psprj

#DOS command

polyspace-checkers-selection.exe -checkers-selection-output-file PathToOutputFile.json ^
-import-options-from-psprj PathToProject.psprj

where PathToProject.psprj is the full path to the polyspace desktop project file and
PathToOutputFile.json is the full path to a JSON file. The JSON file must be in a writable folder.
The JSON file contains the location of the produced checkers file in this format:

 {
 "checkers-activation-file": "GeneratedCheckersActivationFile",
 "analysis-options-file": "GeneratedAnalysisOptionFile"
 }

The checkers file in GeneratedCheckersActivationFile contains the imported checker
configurations from the Polyspace desktop project file.

Step 2:Specify Checkers File in Extension Settings

After creating the checkers file, specify the path to it in the Settings pane:

• On the Side bar, click the Extensions button. The Extensions pane opens where your installed
extensions are listed.

•
Locate Polyspace as You Code in the Extensions pane. Click and select Extension Settings.

• In the Settings pane, specify the path to the checkers file in the field Checkers File.

Modify Checkers Behavior
To modify the default behavior of Bug Finder defect checkers and coding rules, use analysis options.
For a list of analysis options that modify the default checker behavior, see “Modify Default Behavior of
Bug Finder Checkers” (Polyspace Bug Finder Server).

To specify analysis options in Polyspace as You Code:

• Append the analysis options in the options file specified in the field Analysis options file. An
options file is a text file with one analysis option for each line. For instance, to add the analysis
options -code-behavior-specifications and Effective boolean types (-boolean-
types), in the options file, append these lines:

-code-behavior-specifications file1
-boolean-types boolean1_t,boolean2_t

• If you do not have an option file, create an option file that contains the necessary options. Specify
the path to the new options file in the field Other Analysis Options. See “Options Files for
Polyspace Analysis” on page 5-22.

5 Configure Polyspace as You Code

5-66

See Also

More About
• “Polyspace Bug Finder Defects Checkers Enabled by Default” on page 5-73
• “Options Files for Polyspace Analysis” on page 5-22
• “Checkers Deactivated in Polyspace as You Code Default Analysis” on page 5-80
• “Modify Default Behavior of Bug Finder Checkers” (Polyspace Bug Finder Server)

 Configure Checkers for Polyspace as You Code in Visual Studio Code

5-67

Configure Checkers for Polyspace as You Code at the Command
Line

In this section...
“Configure Checkers and Coding Rules Directly at the Command Line” on page 5-68
“Configure Checkers in Checkers file” on page 5-69
“Modify Checkers Behavior” on page 5-71

If you use an unsupported IDE, you can check for various types of defects and coding rule violations
by using Polyspace as You Code at the command line. See “Defects” and “Coding Standards”. The
default analysis checks for a subset of defects. See “Polyspace Bug Finder Defects Checkers Enabled
by Default” on page 5-73. To check for other defects and coding rule violations, configure Polyspace
as You Code.

To configure checkers, create a checkers file and then specify the checkers file at the command line.
For equivalent workflows in the Polyspace desktop and server, see “Prepare Checkers Configuration
for Polyspace Bug Finder Analysis” (Polyspace Bug Finder Server).

Configure Checkers and Coding Rules Directly at the Command Line
When running Polyspace as You Code in an unsupported IDE, you can specify a selection of checkers
and coding rules by using these analysis options with appropriate values directly at the command
line:

• Find defects (-checkers)
• Check MISRA C:2004 (-misra2)
• Check MISRA C:2012 (-misra3)
• Check SEI CERT-C (-cert-c)
• Check ISO/IEC TS 17961 (-iso-17961)
• Check MISRA C++:2008 (-misra-cpp)
• Check SEI CERT-C++ (-cert-cpp)
• Check AUTOSAR C++ 14 (-autosar-cpp14)
• Check JSF AV C++ rules (-jsf-coding-rules)
• Check custom rules (-custom-rules)
• Check Guidelines (-guidelines)

For instance, to activate the performance checkers and MISRA C:2012 coding rule, in the command
line interface, run

polyspace-bug-finder-access -sources <source.c> -checkers performance -misra3 all

See the documentation of the analysis options for their command line syntax. To view the results, use
polyspace-results-export.

Specifying checkers and coding rule selection enables you to select predefined subsets of checkers
and coding rules. To select a customized subset of checkers and coding rules, configure checkers by
using a checker file.

5 Configure Polyspace as You Code

5-68

Configure Checkers in Checkers file
To configure checkers, first select checkers in a checkers file. Then specify the checkers file in the
Settings pane.

Step 1: Select Checkers and Coding Rule

To enable nondefault defects and coding rules, you might:

• Create or modify a checkers file.
• Import a checkers selection from a Polyspace desktop project.

Create or Modify Checkers Configuration

Create a new selection or modify an existing selection of checkers and coding rules in the Checker
selection window. Save the new configuration in a reusable checkers file. To use an existing checkers
file without modifying the checkers selection, specify it at the command line. See “Step 2: Specify
Checker File at the Command Line” on page 5-71.

1 To open the Checkers selection user interface, in the command line, run:

polyspace-checkers-selection

The Checkers Selection interface opens.

 Configure Checkers for Polyspace as You Code at the Command Line

5-69

2 To create a new selection, in the Checkers Selection window, select the defect and the coding
rule checkers that you want to activate. To modify an existing selection, click Browse, navigate
to the existing checkers file and then make your selection.

You can also activate predefined categories of defect checkers such as All, Default, High,
Medium, Low, and CWE. See “Classification of Defects by Impact” on page 3-11. Similarly, you
can activate predefined set of coding rules that are defined by their corresponding standards.

• When selecting Guidelines > Software Complexity checkers, review their thresholds. If the
default thresholds are not acceptable, specify a suitable threshold in the Threshold column.
See Check Guidelines (-guidelines).

• When selecting Custom rules, review the Pattern and Convention for the rules. See Check
custom rules (-custom-rules).

3 Save the selection as a reusable checkers XML file as CreatedCheckerFile.xml and then
Finish. You can later reuse CreatedCheckerFile.xml as a value to -checkers-
activation-file.

5 Configure Polyspace as You Code

5-70

Import Checkers Configuration from Desktop Project

If you have a Polyspace desktop Project (*.psprj) file, you can import checker selection from it. At
the command line, run

#Linux command
polyspace-checkers-selection -checkers-selection-output-file PathToOutputFile.json \
-import-options-from-psprj PathToProject.psprj

#DOS command
polyspace-checkers-selection -checkers-selection-output-file PathToOutputFile.json \
-import-options-from-psprj PathToProject.psprj

where PathToProject.psprj is the full path to the polyspace desktop project file and
PathToOutputFile.json is the full path to a JSON file. The JSON file must be in a writable folder.
The JSON file contains the location of the produced checkers file in this format:

 {
 "checkers-activation-file": "PathToCreatedCheckerFile",
 "analysis-options-file": "CreatedOptionsFile"
 }

The checkers file in PathToCreatedCheckerFile contains the checker configurations in the
Polyspace desktop project file.

Step 2: Specify Checker File at the Command Line

After you obtain the checkers file, specify its full path as an argument to -checkers-activation-
file. For instance:

#Linux command
polyspace-bug-finder-access -sources <source.c> \
-checkers-activation-file PathToCreatedCheckerFile

#DOS command

polyspace-bug-finder-access -sources <source.c> ^
-checkers-activation-file PathToCreatedCheckerFile

where PathToCreatedCheckerFile is the full path to the checkers file.

Modify Checkers Behavior
To modify the default behavior of Bug Finder defect checkers and coding rules, use analysis options.
For a list of analysis options that modify the default checker behavior, see “Modify Default Behavior of
Bug Finder Checkers” (Polyspace Bug Finder Server).

To specify analysis options in Polyspace as You Code:

• Use the options in the command line. For instance, to modify the trust boundary of your analysis,
in the command line, run:

polyspace-bug-finder-access -sources <source.c> -checkers-activation-file CreatedCheckerFile -consider-analysis-perimeter-as-trust-boundary

 Configure Checkers for Polyspace as You Code at the Command Line

5-71

You can specify multiple behavior modifying options in the command line.
• Append the analysis options in the options file specified in the field Analysis options file. An

options file is a text file with one analysis option for each line. For instance, to add the analysis
options -code-behavior-specifications and Effective boolean types (-boolean-
types), in the options file, append these lines:

-code-behavior-specifications file1
-boolean-types boolean1_t,boolean2_t

• If you do not have an existing options file, create an options file containing the necessary options.
See “Options Files for Polyspace Analysis” on page 5-22.

See Also

More About
• “Polyspace Bug Finder Defects Checkers Enabled by Default” on page 5-73
• “Options Files for Polyspace Analysis” on page 5-22
• “Checkers Deactivated in Polyspace as You Code Default Analysis” on page 5-80
• “Modify Default Behavior of Bug Finder Checkers” (Polyspace Bug Finder Server)
• “Run Polyspace as You Code from Command Line and Export Results” on page 6-14

5 Configure Polyspace as You Code

5-72

Polyspace Bug Finder Defects Checkers Enabled by Default
When you start a Bug Finder analysis, these checkers are enabled by default:

Defect Command-line Name
Absorption of float operand FLOAT_ABSORPTION
Accessing object with temporary
lifetime

TEMP_OBJECT_ACCESS

Alignment changed after memory
reallocation

ALIGNMENT_CHANGE

Alternating input and output from a
stream without flush or positioning
call

IO_INTERLEAVING

Array access out of bounds OUT_BOUND_ARRAY
Assertion ASSERT
Atomic load and store sequence not
atomic

ATOMIC_VAR_SEQUENCE_NOT_ATOMIC

Atomic variable accessed twice in an
expression

ATOMIC_VAR_ACCESS_TWICE

Base class assignment operator not
called

MISSING_BASE_ASSIGN_OP_CALL

Base class destructor not virtual DTOR_NOT_VIRTUAL
Buffer overflow from incorrect string
format specifier

STR_FORMAT_BUFFER_OVERFLOW

Call through non-prototyped function
pointer

UNPROTOTYPED_FUNC_CALL

Character value absorbed into EOF CHAR_EOF_CONFUSED
Closing a previously closed resource DOUBLE_RESOURCE_CLOSE
Conversion or deletion of incomplete
class pointer

INCOMPLETE_CLASS_PTR

Copy constructor not called in
initialization list

MISSING_COPY_CTOR_CALL

Copy operation modifying source
operand

COPY_MODIFYING_SOURCE

Data race DATA_RACE
Data race on adjacent bit fields DATA_RACE_BIT_FIELDS
Data race through standard library
function call

DATA_RACE_STD_LIB

Dead code DEAD_CODE
Deadlock DEADLOCK
Deallocation of previously deallocated
pointer

DOUBLE_DEALLOCATION

 Polyspace Bug Finder Defects Checkers Enabled by Default

5-73

Defect Command-line Name
Declaration mismatch DECL_MISMATCH
Destination buffer overflow in string
manipulation

STRLIB_BUFFER_OVERFLOW

Destination buffer underflow in string
manipulation

STRLIB_BUFFER_UNDERFLOW

Double lock DOUBLE_LOCK
Double unlock DOUBLE_UNLOCK
Environment pointer invalidated by
previous operation

INVALID_ENV_POINTER

Errno not reset MISSING_ERRNO_RESET
Exception caught by value EXCP_CAUGHT_BY_VALUE
Exception handler hidden by previous
handler

EXCP_HANDLER_HIDDEN

Float conversion overflow FLOAT_CONV_OVFL
Float division by zero FLOAT_ZERO_DIV
Format string specifiers and arguments
mismatch

STRING_FORMAT

Improper array initialization IMPROPER_ARRAY_INIT
Incompatible types prevent overriding VIRTUAL_FUNC_HIDING
Incorrect data type passed to va_arg VA_ARG_INCORRECT_TYPE
Incorrect pointer scaling BAD_PTR_SCALING
Incorrect type data passed to va_start VA_START_INCORRECT_TYPE
Incorrect use of offsetof in C++ OFFSETOF_MISUSE
Incorrect use of va_start VA_START_MISUSE
Incorrect value forwarding INCORRECT_VALUE_FORWARDING
Inline constraint not respected INLINE_CONSTRAINT_NOT_RESPECTED
Integer conversion overflow INT_CONV_OVFL
Integer division by zero INT_ZERO_DIV
Invalid assumptions about memory
organization

INVALID_MEMORY_ASSUMPTION

Invalid deletion of pointer BAD_DELETE
Invalid free of pointer BAD_FREE
Invalid use of = (assignment) operator BAD_EQUAL_USE
Invalid use of == (equality) operator BAD_EQUAL_EQUAL_USE
Invalid use of standard library
floating point routine

FLOAT_STD_LIB

Invalid use of standard library
integer routine

INT_STD_LIB

5 Configure Polyspace as You Code

5-74

Defect Command-line Name
Invalid use of standard library memory
routine

MEM_STD_LIB

Invalid use of standard library
routine

OTHER_STD_LIB

Invalid use of standard library string
routine

STR_STD_LIB

Invalid va_list argument INVALID_VA_LIST_ARG
Lambda used as typeid operand LAMBDA_TYPE_MISUSE
Memory comparison of padding data MEMCMP_PADDING_DATA
Memory comparison of strings MEMCMP_STRINGS
Missing lock BAD_UNLOCK
Missing null in string array MISSING_NULL_CHAR
Missing return statement MISSING_RETURN
Missing unlock BAD_LOCK
Misuse of a FILE object FILE_OBJECT_MISUSE
Misuse of errno ERRNO_MISUSE
Misuse of errno in a signal handler SIG_HANDLER_ERRNO_MISUSE
Misuse of sign-extended character
value

CHARACTER_MISUSE

Misuse of structure with flexible
array member

FLEXIBLE_ARRAY_MEMBER_STRUCT_MISUSE

Move operation on const object MOVE_CONST_OBJECT
Noexcept function exits with exception NOEXCEPT_FUNCTION_THROWS
Non-initialized pointer NON_INIT_PTR
Non-initialized variable NON_INIT_VAR
Null pointer NULL_PTR
Object slicing OBJECT_SLICING
Opening previously opened resource DOUBLE_RESOURCE_OPEN
Operator new not overloaded for
possibly overaligned class

MISSING_OVERLOAD_NEW_FOR_ALIGNED_OBJ

Partial override of overloaded virtual
functions

PARTIAL_OVERRIDE

Partially accessed array PARTIALLY_ACCESSED_ARRAY
Pointer access out of bounds OUT_BOUND_PTR
Pointer or reference to stack variable
leaving scope

LOCAL_ADDR_ESCAPE

Possible misuse of sizeof SIZEOF_MISUSE

 Polyspace Bug Finder Defects Checkers Enabled by Default

5-75

Defect Command-line Name
Possibly unintended evaluation of
expression because of operator
precedence rules

OPERATOR_PRECEDENCE

Predefined macro used as an object MACRO_USED_AS_OBJECT
Preprocessor directive in macro
argument

PRE_DIRECTIVE_MACRO_ARG

Resource leak RESOURCE_LEAK
Return from computational exception
signal handler

SIG_HANDLER_COMP_EXCP_RETURN

Self assignment not tested in operator MISSING_SELF_ASSIGN_TEST
Shared data access within signal
handler

SIG_HANDLER_SHARED_OBJECT

Side effect of expression ignored SIDE_EFFECT_IGNORED
Sign change integer conversion
overflow

SIGN_CHANGE

Signal call from within signal handler SIG_HANDLER_CALLING_SIGNAL
Standard function call with incorrect
arguments

STD_FUNC_ARG_MISMATCH

Stream argument with possibly
unintended side effects

STREAM_WITH_SIDE_EFFECT

Subtraction or comparison between
pointers to different arrays

PTR_TO_DIFF_ARRAY

Throw argument raises unexpected
exception

THROW_ARGUMENT_EXPRESSION_THROWS

Too many va_arg calls for current
argument list

TOO_MANY_VA_ARG_CALLS

Typedef mismatch TYPEDEF_MISMATCH
Universal character name from token
concatenation

PRE_UCNAME_JOIN_TOKENS

Unnamed namespace in header file UNNAMED_NAMESPACE_IN_HEADER
Unreachable code UNREACHABLE
Unreliable cast of function pointer FUNC_CAST
Unreliable cast of pointer PTR_CAST
Unsigned integer conversion overflow UINT_CONV_OVFL
Use of automatic variable as putenv-
family function argument

PUTENV_AUTO_VAR

Use of previously closed resource CLOSED_RESOURCE_USE
Use of previously freed pointer FREED_PTR
Useless if USELESS_IF

5 Configure Polyspace as You Code

5-76

Defect Command-line Name
Variable length array with nonpositive
size

NON_POSITIVE_VLA_SIZE

Variable shadowing VAR_SHADOWING
Write without a further read USELESS_WRITE
Writing to const qualified object CONSTANT_OBJECT_WRITE
Writing to read-only resource READ_ONLY_RESOURCE_WRITE
Wrong type used in sizeof PTR_SIZEOF_MISMATCH

 Polyspace Bug Finder Defects Checkers Enabled by Default

5-77

Analysis Scope of Polyspace as You Code
Polyspace as You Code is a static code analysis software meant for regular use by C/C++ developers
within their Integrated Development Environments (IDEs). Polyspace as You Code can find bugs and
coding standard violations on the file that is currently active in the IDE.

This topic outlines the analysis scope of Polyspace as You Code and the benefits of using Polyspace
Bug Finder or Polyspace Bug Finder Server for full integration analysis.

Results Involve Current File Only
Polyspace as You Code is designed to provide results that are of immediate interest to developers. So
the tool only shows results in files that you are currently working on. After installing the Polyspace as
You Code extension, each time you open or save a file in your IDE, the analysis runs silently in the
background and highlights issues in the file.

All issues found originate within the source file itself and can also be fixed within this file. You can
either implement the fix at the highlighted location or another related location still within the current
file. For instance, the following integer division by zero result is shown with related events on
previous lines. You can implement a guard against division by zero just before the division or
implement some checks on inputs to the function where the division is performed.

Results that involve multiple files, for instance, declaration mismatch across files or data flow
between functions in different files, are not shown in the default Polyspace as You Code analysis. To
see complete integration results on your project, analyze your project with Polyspace Bug Finder on
your desktop or with Polyspace Bug Finder Server on a continuous integration (CI) server.

Some checkers that are not likely to find issues in a single-file analysis are completely disabled in
Polyspace as You Code. See “Checkers Deactivated in Polyspace as You Code Default Analysis” on
page 5-80.

Headers Included in Current File Not Analyzed
If a source file #include-s a header that is in the same folder as the source (or in subfolders), the
analysis considers this header but does not show any result inside the header. All other header files
are taken into account for compilation but not analyzed further.

5 Configure Polyspace as You Code

5-78

The reason for this default behavior is the following:

• Headers close to sources:

The underlying assumption is that headers in the source folders are more closely related to the
current source file and are therefore relevant for the analysis. However, a developer might not
own the headers and might not want to fix issues such as coding standard violations in the
headers. Therefore, results in these headers are not shown.

• Headers in non-source folders:

Headers in other folders typically come from third party libraries and are not analyzed.

You can change this default behavior using these options:

• Generate results for sources and (-generate-results-for): Use this option to
expand the scope of which headers must be analyzed.

• Do not generate results for (-do-not-generate-results-for): Use this option to
expand the scope of which headers must not be analyzed.

Even using these options, you cannot see results in headers #include-d through source files. If you
want results in a header file, analyze the header file directly and not through a source file.

 Analysis Scope of Polyspace as You Code

5-79

Checkers Deactivated in Polyspace as You Code Default
Analysis

Checkers and Coding Rule Deactivated in Polyspace as You Code
By default, Polyspace as You Code runs an analysis on the currently active file in your IDE. If finding
an issue typically requires multiple source files, the default Polyspace as You Code analysis might not
flag it. Checkers corresponding to these issues are deactivated in a default Polyspace as you Code
analysis. These issues can be detected by running an integration analysis on your project by using
Polyspace Bug Finder or Polyspace Bug Finder Server.

Deactivated Bug Finder Checkers

The Bug Finder checkers that are deactivated in the default Polyspace as You Code analysis include:

• Declaration mismatch
• Qualifier removed in conversion
• Typedef mismatch
• “Concurrency Defects”

Deactivated CERT C Rules

The CERT C coding rules that are deactivated in the default Polyspace as You Code analysis include:

• CERT C: Rule DCL40-C
• CERT C: Rec. DCL15-C

Deactivated Cert C++ Rules

The CERT C++ coding rules that are deactivated in the default Polyspace as You Code analysis
include:

• CERT C++: DCL40-C

Deactivated MISRA C:2004 and MISRA AC AGC Rules

The MISRA C:2004 and MISRA AC AGC coding rules that are deactivated in the default Polyspace as
You Code analysis include:

• MISRA C:2004 and MISRA AC AGC Rules 5.1, 5.4, 5.6, 8.4, 8.8, 8.9, 8.10. See “Supported MISRA
C:2004 and MISRA AC AGC Rules” on page 7-3

Deactivated MISRA C:2012 Rules

The MISRA C:2012 coding rules that are deactivated in the default Polyspace as You Code analysis
include:

• MISRA C:2012 Rule 2.3
• MISRA C:2012 Rule 2.4
• MISRA C:2012 Rule 2.5
• MISRA C:2012 Rule 5.1

5 Configure Polyspace as You Code

5-80

• MISRA C:2012 Rule 5.6
• MISRA C:2012 Rule 5.8
• MISRA C:2012 Rule 5.9
• MISRA C:2012 Rule 8.3
• MISRA C:2012 Rule 8.5
• MISRA C:2012 Rule 8.6
• MISRA C:2012 Rule 8.7

Deactivated ISO/IEC TS 17961 Rules

The ISO/IEC TS 17961 coding rules that are deactivated in the default Polyspace as You Code analysis
include:

• ISO/IEC TS 17961 [funcdecl]

Deactivated MISRA C++:2008 Rules

The MISRA C++:2008 coding rules that are deactivated in the default Polyspace as You Code analysis
include:

• MISRA C++:2008 Rule 0-1-3
• MISRA C++:2008 Rule 2-10-5
• MISRA C++:2008 Rule 3-2-1
• MISRA C++:2008 Rule 3-2-2
• MISRA C++:2008 Rule 3-2-3
• MISRA C++:2008 Rule 3-2-4
• MISRA C++:2008 Rule 15-4-1

Deactivated AUTOSAR C++14 Rules

The AUTOSAR C++14 coding rules that are deactivated in the default Polyspace as You Code analysis
include:

• AUTOSAR C++14 Rule M0-1-3
• AUTOSAR C++14 Rule M3-2-1
• AUTOSAR C++14 Rule M3-2-2
• AUTOSAR C++14 Rule M3-2-3
• AUTOSAR C++14 Rule M3-2-4

Deactivated JSF C++ Coding Rules

The JSF C++ coding rules that are deactivated in the default Polyspace as You Code analysis include:

• JSF C++ Rule 46,137,139. See “Supported JSF C++ Coding Rules” on page 7-48.

Checkers with Reduced Scope in Polyspace as You Code
The checkers that finds fewer issues in the default Polyspace as You Code analysis are listed in the
table. The issues that are not found are related to multiple-file analysis.

 Checkers Deactivated in Polyspace as You Code Default Analysis

5-81

Checker Behavior in the default Polyspace as You
Code Analysis

CERT C: Rule EXP37-C Does not check for “Function declaration
mismatch”.

CERT C++: EXP37-C Does not check for “Function declaration
mismatch”.

CERT C++: DCL60-CPP Does not check for “Nonidentical Definitions of
Function or Object Across Modules”.

CERT C: Rec. DCL19-C Does not check for “Function or object declared
without static specifier and referenced in only
one file”.

CERT C: Rec. DCL23-C Does not check for “External identifiers not
distinct”.

AUTOSAR C++14 Rule A0-1-3 Does not check for “Private Member Function
Not Used”.

ISO/IEC TS 17961 [argcomp] Does not check for “Conflicting declarations or
conflicting declaration and definition”.

5 Configure Polyspace as You Code

5-82

Troubleshoot Failed Analysis or Unexpected Results in
Polyspace as You Code

Issue
After installing and configuring Polyspace as You Code in your IDE, you should see analysis results as
source code markers within a few seconds of starting the analysis (slightly longer for C++ files). If
you do not see results, it could mean that the analysis did not find any issue or the analysis failed to
complete or even failed to start.

If you run Polyspace as You Code on each save, some of the runs might fail because a file does not
compile yet. If you do not see results despite successful compilation, you might have to investigate
further and change the analysis options or extension settings. (Note that you can enable the checker
File does not compile so that you always see at least one result, even when the file does not
compile.)

Possible Solutions
If you do not see results, first confirm that the analysis reached completion. If the analysis completed
but did not find any issue, on the IDE pane that shows the full list of results, you see a status message
indicating completion. For instance, in Visual Studio, on the Polyspace Results List pane, you see
this message:

If the analysis failed to complete, you also see a status message indicating failure. For further
diagnosis, check the analysis log within the IDE. For instance, in Visual Studio, open the Output
pane, select Polyspace from the Show output from drop-down list, and check the messages. You
might have to scroll up a bit to see the root cause of the failure.

For more information on how to follow analysis progress in specific IDEs, see:

 Troubleshoot Failed Analysis or Unexpected Results in Polyspace as You Code

5-83

• “Run Polyspace as You Code in Visual Studio and Review Results” on page 6-2
• “Run Polyspace as You Code in Visual Studio Code and Review Results” on page 6-6
• “Run Polyspace as You Code in Eclipse and Review Results” on page 6-10

Check if Build Analysis is Outdated

The most common cause of an analysis failure is a compilation error. If a file compiles with your
compiler but fails with Polyspace, it means that the analysis requires more information to emulate
your compiler. In the most common scenario, the error indicates that you have to reanalyze your
build.

If you specify in your extension settings that the analysis must use options extracted from a build
command, a build task or a JSON compilation database, you must analyze your build command first
and then run Polyspace as You Code. The build analysis must run on a command or task that performs
a full build of your project or workspace and not an incremental build.

If you add a new file to your project or workspace but forget to rerun build analysis, you might see
compilation errors when trying to analyze the new file. The most common error is that include files
cannot be found. To fix the issue, simply rerun your build analysis and then run Polyspace as You
Code. For details, see “Analyzing Build in Polyspace as You Code”.

Check for Mistakes in Options File

If you specify an options file in your extension settings, the analysis appends options from this file to
the underlying run command. If an option is incorrectly written, for instance, refers to a nonexistent
file or uses an incorrect argument, the analysis can fail.

You can see all errors and warnings related to options in the analysis log. To see a more detailed log,
use the analysis option -no-quiet. You can enter this option in the same options file that contains
your other options. See “Options Files for Polyspace Analysis” on page 5-22.

Check for Incorrect Path to Analysis Engine

In Visual Studio Code, you can change the extension setting that points to the Polyspace installation
folder. If you enter an incorrect path in this setting, the Polyspace as You Code extension fails to start.
You see a message indicating that the internal server, Polyspace Connector, attempted to start and
then failed.

Check that the installation folder that you provided in your extension settings indeed contains a
Polyspace installation. The path must contain a subfolder polyspace\bin, that contains the
polyspace-bug-finder-access executable.

5 Configure Polyspace as You Code

5-84

See Also

Related Examples
• “Run Polyspace as You Code in Visual Studio and Review Results” on page 6-2
• “Run Polyspace as You Code in Visual Studio Code and Review Results” on page 6-6
• “Run Polyspace as You Code in Eclipse and Review Results” on page 6-10
• “Run Polyspace as You Code from Command Line and Export Results” on page 6-14

 Troubleshoot Failed Analysis or Unexpected Results in Polyspace as You Code

5-85

Reduce Software Complexity by Using Polyspace Checkers
Software complexity refers to various quantifiable metrics of a software module or source files, such
as number of lines, number of paths, number of functions, or the complexity of the function call tree.
The Polyspace software complexity checkers are raised when these metrics exceeds a threshold. High
software complexity might indicate that your code is difficult to read, understand, and debug. It is
more efficient to maintain the acceptable level of software complexity during development instead of
refactoring complex projects later on. Use the software complexity checkers to detect complex
modules early in the development cycle to reduce later refactoring efforts.

You can also calculate the absolute values of code complexity metrics for all files and functions. See
“Compute Code Complexity Metrics” (Polyspace Bug Finder Server).

Configure Thresholds for Software Complexity Checkers
Each software complexity checker corresponds to a complexity metric. Polyspace raises a software
complexity checker when the corresponding code complexity metric exceeds a threshold.

The default thresholds of these checkers follow the Hersteller Initiative Software (HIS) Code
Complexity standard. See “HIS Code Complexity Metrics” (Polyspace Bug Finder Server). For
checkers that are not present in the HIS standard, the default thresholds are high enough that the
code complexity metrics of your code might always be below the threshold. To use these checkers
effectively, specify an appropriate threshold for them.

Determine an appropriate set of thresholds for these checkers depending on the best practice for
your use case. For instance, when analyzing new projects or newly developed code, you might want to
reduce the use of GOTO statements by setting the threshold of Number of goto statements
exceeds threshold to zero. When analyzing modules containing legacy libraries, you might want
to set the threshold to a higher number.

Depending on your Polyspace product, use the user interface or the command-line interface to specify
the threshold. For instance:

• In Polyspace desktop or Server products, in the Checkers selection window, navigate to
Guidelines > Software Complexity and specify the threshold. In the command line, use the
analysis option Check Guidelines (-guidelines). See “Check for Coding Standard
Violations” (Polyspace Bug Finder Server).

• In Polyspace as You Code extension, start the Checkers selection window and specify the
thresholds in the Guidelines > Software Complexity node.

• In Eclipse, open the Checkers selection window from the Configure Project window. See
“Configure Checkers for Polyspace as You Code in Eclipse” on page 5-57.

• In Visual Studio, open the Checkers selection window from the Polyspace > Project node of
the Options window. See “Configure Checkers for Polyspace as You Code in Visual Studio” on
page 5-61.

• In Visual Studio Code, open the Checkers selection window from the command palette. See
“Configure Checkers for Polyspace as You Code in Visual Studio Code” on page 5-64.

• At the command line, open the Checkers selection window by running the command
polyspace-checkers-selection. See “Configure Checkers for Polyspace as You Code at
the Command Line” on page 5-68.

5 Configure Polyspace as You Code

5-86

Identify and Reduce Software Complexity
Identify Software Complexity by Running Bug Finder Analysis

To identify software complexity, configure the thresholds of the checkers. For instance, set the
thresholds of the checkers listed in this table.

Checker Threshold
Comment density below threshold 20
Call tree complexity exceeds threshold 10
Number of call occurrences exceeds
threshold

10

Language scope exceeds threshold 400

The thresholds indicate the acceptable level of software complexity. To identify issues in your code
that might lead to a higher level of complexity, after configuring the software complexity checkers,
run a Polyspace Bug Finder analysis. Consider this code:

 long long power(double x, int n){
 long long BN = 1;
 for(int i = 0; i<n;++i){
 BN*=x;
 }
 return BN;
 }

 double AppxIndex(double m, double f){//Noncompliant
 double U = (power(m,2) - 1)/(power(m,2)+2);
 double V = (power(m,4) + 27*power(m,2)+38)/(2*power(m,2)+3);
 return (1+2*f*power(U,2)*(1+power(m,2)*U*V+ power(m,3)
 /power(m,3)*(U-V)))/((1-2*f*power(U,2)*(1+power(m,2)*U*V
 + power(m,3)/power(m,3)*(U-V))));
 }

The function AppxIndex appears complex. It is not obvious how you might reduce the complexity.
The software complexity checkers help you identify the sources of complexity.

After the Bug Finder analysis, the configured checkers are raised:

• Comment density below threshold: The functions in the code contain no explanatory
comments.

• Call tree complexity exceeds threshold and Number of call occurrences
exceeds threshold: There are too many function calls compared to the number of function
definitions. These checks indicate that you can package some of the expressions into separate
functions.

• Language scope exceeds threshold: The same operand is repeated several times. You can
reduce some of the repetition. For instance, the function power is called with the same arguments
several times.

These checks indicate that the function AppxIndex might make the code difficult to read,
understand, and debug. To reduce the complexity of the code, address the raised checks.

 Reduce Software Complexity by Using Polyspace Checkers

5-87

Reduce Software Complexity

Reduce the complexity of your code by addressing the identified issues. In this case, the root cause of
the raised checks is that the function AppxIndex performs several tasks instead of performing one
single task. For instance, the function first calculates U, then it calculates V, and finally it evaluates a
lengthy expression containing both U and V. To address these issues, refactor the function
AppxIndex so that each task is delegated to a separate function. You might break down the lengthy
expression into smaller parts. For instance:

// This code calculates effective index of materials as described in
// the formula in 10.1364...
// power(x,n) returns the nth power of x (x^n)
// n is an integer
// x is a double
// return type is long long

long long power(double x, int n){//Compliant
 long long BN = 1;
 for(int i = 0; i<n;++i){
 BN*=x;
 }
 return BN;
}
// CalculateU(m) calculates the first intermediate variable
// required to calculate polarization
// m is the relative refractive index
// return type is double;

double CalculateU(double m){//Compliant
 return (power(m,2) - 1)/(power(m,2)+2);
}
// CalculateV(m) calculates the second intermediate variable
// required to calculate polarization
// m is the relative refractive index
// return type is double;

double CalculateV(double m){//Compliant
 return (power(m,4) + 27*power(m,2)+38)/(2*power(m,2)+3);
}
// CalculateMid(m,f) calculates the large term present
// in both numerator and denominator
// of the effective index calculation
// m is the relative refractive index
// f is the fillfactor
// return type is double;

double CalculateMid(double m, double f){//Compliant
 double U = CalculateU(m);
 double V = CalculateU(m);
 return 2*f*power(U,2)*(1+power(m,2)*U*V + power(m,3)/power(m,3)*(U-V));
}
//AppxIndex(m,f) calculates the approximate effective index
// m is the relative refractive index
// f is the fillfactor
//return type is double
double AppxIndex(double m, double f){//Compliant

5 Configure Polyspace as You Code

5-88

 return (1+CalculateMid(m,f))/((1-CalculateMid(m,f)));
}

In this code, none of the software complexity checkers is raised, which indicates that you reduced the
complexity of this code to an acceptable level. To reduce the software complexity:

1 Document the code with sufficient comments.
2 Break down the The large complex task performed by AppxIndex into smaller and simpler tasks,

which are then delegated to individual functions such as CalculateU, CalculateV and
CalculateMid. The function power is now called less frequently. If you later implement a
different function to calculate a power and want to use the new function instead of the current
one, you have to make fewer replacements.

3 Write the new functions to perform one specific task with as little overlap of their functionalities
as possible. As a result, these functions contain less repetition of the same operands.

For details about addressing a software complexity check, see the documentation of the checker.

In cases when you are unable to refactor the code, address the checks through code annotations. For
instance, if you are using a complex library, you might choose to annotate the checks that are raised
on the library. See “Hide Known or Acceptable Polyspace Results” on page 2-5. When you annotate a
file or function code metric, the corresponding software complexity checker is also annotated by the
same comment.

See Also

More About
• “Guidelines”

 Reduce Software Complexity by Using Polyspace Checkers

5-89

Review Results in Polyspace as You
Code

6

Run Polyspace as You Code in Visual Studio and Review
Results

You can choose to run Polyspace as You Code on each save in the Visual Studio IDE, or at will. The
analysis runs on the file that is currently active in the IDE (the file must be part of a Visual Studio
project, which can be part of a larger Visual Studio solution). After analysis, you see bugs and coding
standard violations as source code markers or in a separate list.

Confirm Installation of Extension
To confirm that your Visual Studio installation has the Polyspace as You Code extension, check the list
of extensions installed.

• In Visual Studio 2019, select Extensions > Manage Extensions.
• In Visual Studio 2017, select Tools > Extensions and Updates.

You can also confirm that the extension starts as expected on the Output pane. Select View >
Output and then from the dropdown, select Polyspace. If the extension starts without errors, you
see a message such as:

11/25/2020 3:59:37 PM.005: Please wait while Polyspace Connector is starting on port '9091'...
11/25/2020 3:59:41 PM.229: Polyspace Connector has started successfully.

The Polyspace Connector is an internal server that handles communication between the Polyspace as
You Code analysis engine and the Visual Studio extension. If the default port is not available, the
extension increments the port number and attempts to start the Polyspace Connector on the next
port. If you use multiple Visual Studio instances, you can run Polyspace as You Code on all the
instances. The Polyspace Connector in each instance uses a different port.

Run Analysis on Save
By default, Polyspace as You Code is configured to run analysis on save. Analysis results appear
within a few seconds but in case of an error, you can check the progress of analysis on the Output
pane.

After analysis, results appear as source code markers (lines below source code tokens). You also see
the error locations as red circles in the scroll bar on the left.

To disable analysis on save:

1 Select Tools > Options.
2 On the Polyspace node, in the Analysis launch mode section, select Manually.

If results do not appear, see “Troubleshoot Failed Analysis or Unexpected Results in Polyspace as You
Code” on page 5-83.

6 Review Results in Polyspace as You Code

6-2

Run Analysis on Demand
You can also explicitly start a Polyspace analysis. To start an analysis, right-click a source file in the
Visual Studio Solution Explorer or right-click on the source file content itself, and select Run
Polyspace analysis.

Review Results
After analysis, the results appear in two forms:

• As source code markers (with a line below source code tokens).

You can hover on a source code token to see more details about a result.

• In a list on the Polyspace Results List pane.

To open the pane, select View > Other Windows > Polyspace Results List.

The results list shows results only for the file that is currently active in the IDE. For instance, if
you switch to another file, the results list shows defects found in the new file that is active.

 Run Polyspace as You Code in Visual Studio and Review Results

6-3

If you select a result in this list, you see further details of the result on the Polyspace Result
Details pane.

Justify Results Using Code Annotations
If you decide not to fix a result, you can add code annotations to the result to avoid another review. If
the annotations follow a specific syntax, subsequent Polyspace as You Code runs can read these
annotations and suppress the corresponding results.

To add a code annotation, click the source code token containing a result. Click the light bulb icon
that appears and select Polyspace Annotate finding result_name. The annotation is entered on
the same line as the result.

See also:

• “Hide Known or Acceptable Polyspace Results” on page 2-5
• “Short Names of Bug Finder Defect Checkers” on page 2-12

View Help
You can see more information on a type of result by visiting the context-sensitive help page for the
result.

• To open the context-sensitive help for a result, first open the Polyspace Result Details pane for a
result. Then, click the question mark icon next to the result details.

• To navigate directly to the Fix section of the context-sensitive help for a result, click the wrench
icon next to the result details.

6 Review Results in Polyspace as You Code

6-4

You can also open the full searchable documentation for the Polyspace as You Code extension from
within Visual Studio. To open the documentation, select Help > Open Polyspace Product Help.

Configure Checkers and Other Settings
By default, Polyspace as You Code checks for defects that are likely to be of most interest to
developers. You can expand the set of checkers and perform other configuration through the
Polyspace as You Code extension settings in Visual Studio. To open the settings, select Tools >
Options and specify appropriate settings on the Polyspace node.

For instance, you might want to:

• Enable or disable certain checkers.

See “Configure Checkers for Polyspace as You Code in Visual Studio” on page 5-61.
• See only new results.

See “Baseline Polyspace as You Code Results in Visual Studio” on page 5-41.

For the full list of settings, see “Configure Polyspace as You Code Extension in Visual Studio” on page
5-2.

 Run Polyspace as You Code in Visual Studio and Review Results

6-5

Run Polyspace as You Code in Visual Studio Code and Review
Results

You can choose to run Polyspace as You Code on each save in the Visual Studio Code IDE, or at will.
The analysis runs on the file that is currently active in the IDE. After analysis, you see bugs and
coding standard violations as source code markers or in a separate list.

Confirm Installation of Extension
To confirm that your Visual Studio Code installation has the Polyspace as You Code extension, check
the list of extensions installed.

In Visual Studio Code, select View > Extensions or click this button on the left:

Look for Polyspace as You Code in the list of extensions installed.

Run Analysis on Save
By default, Polyspace as You Code is configured to run analysis on save. Analysis results appear
within a few seconds on the source code. In case of an error, you see a popup with the error message.
To diagnose further, select View > Output. On the OUTPUT pane, from the dropdown on the upper
right, select Polyspace as You Code.

After analysis, results appear as source code markers (wavy lines below source code tokens). You also
see the error locations as red marks on the scroll bar. Click an error location to navigate to the
corresponding source code.

To disable analysis on save:

1
On the EXTENSIONS pane, click the icon next to Polyspace as You Code and select
Extension Settings.

2 On the Workspace tab, for Analysis Launch Mode, select Manually.

If results do not appear, see “Troubleshoot Failed Analysis or Unexpected Results in Polyspace as You
Code” on page 5-83.

Run Analysis on Demand
You can also explicitly start a Polyspace analysis. To start an analysis, do one of the following:

6 Review Results in Polyspace as You Code

6-6

• Right click a source file in the EXPLORER pane or right-click on the file content itself and select
Polyspace: Analyze Active File.

• With your cursor in the source file, press Ctrl + Shift + Alt + A.

Review Results
After analysis, the results appear in two forms:

• As source code markers (with a wavy line below source code tokens).

You can hover on a source code token to see more details about a result.
• In a list on the PROBLEMS window.

To open the window, select View > Problems.

 Run Polyspace as You Code in Visual Studio Code and Review Results

6-7

Justify Results Using Code Annotations
If you decide not to fix a result, you can add code annotations to the result to avoid having to fix the
result again. If the annotations follow a specific syntax, subsequent Polyspace as You Code runs can
read these annotations and suppress the corresponding results.

To add a code annotation, click the light bulb icon beside the source code token containing a result
and select Justify with annotation: result_name. The annotation is entered on the same line as
the result.

See also:

• “Hide Known or Acceptable Polyspace Results” on page 2-5
• “Short Names of Bug Finder Defect Checkers” on page 2-12

View Context-Sensitive Help for Result
You can see more information on a type of result by visiting the context-sensitive help page for the
result.

• To open the context-sensitive help for a result, click the light bulb icon beside the source code
token containing a result and select Learn more about: result_name.

• To navigate directly to the Fix section of the context-sensitive help for a result, click the light bulb
icon beside the source code token containing a result and select Learn how to fix result_name.

You can also open the full searchable documentation for the Polyspace as You Code extension from
within Visual Studio Code. To open the documentation, select View > Command Palette. In the
command palette, select Polyspace: Open Documentation.

6 Review Results in Polyspace as You Code

6-8

Configure Checkers and Other Settings
By default, Polyspace as You Code checks for defects that are likely to be of most interest to
developers. You can expand the set of checkers and perform other configuration through the
Polyspace as You Code extension settings in Visual Studio Code. To open the settings, on the

EXTENSIONS pane, click the icon next to Polyspace as You Code and select Extension
Settings.

For instance, you might want to:

• Enable or disable certain checkers.

See “Configure Checkers for Polyspace as You Code in Visual Studio Code” on page 5-64.
• See only new results.

See “Baseline Polyspace as You Code Results in Visual Studio Code” on page 5-45.

For the full list of settings, see “Configure Polyspace as You Code Extension in Visual Studio Code” on
page 5-6.

 Run Polyspace as You Code in Visual Studio Code and Review Results

6-9

Run Polyspace as You Code in Eclipse and Review Results
This topic describes how to run a single-file analysis in Eclipse using Polyspace as You Code. For
Polyspace desktop products such as Polyspace Bug Finder, see the topic "Polyspace Analysis in
Eclipse" in the Polyspace Bug Finder documentation.

You can choose to run Polyspace as You Code on each save in the Eclipse IDE, or at will. The analysis
runs on the file that is currently active in the IDE. After analysis, you see bugs and coding standard
violations as source code markers or in a separate list.

Confirm Installation of Plugin
To confirm that your Eclipse installation has the Polyspace as You Code plugin, check the list of
plugins installed.

1 Select Help > About Eclipse.
2 Select Installation Details and browse through the list of installed plugins.

You can also confirm that the extension starts as expected on the IDE console. To open the console
explicitly, select Window > Show View > Console. If the extension starts without errors, you see a
message such as:

11/25/2020 3:59:37 PM.005: Starting Polyspace Connector on port 9093...
11/25/2020 3:59:41 PM.229: Polyspace Connector successfully started

The Polyspace Connector is an internal server that handles communication between the Polyspace as
You Code analysis engine and the Eclipse plugin. If the default port is not available, the plugin
increments the port number and attempts to start the Polyspace Connector on the next port.

Run Analysis on Save
By default, Polyspace as You Code is configured to run analysis on save. Follow the progress of
analysis on the IDE console.

After analysis, results appear as source code markers (lines below source code tokens). You also see
the error locations as red marks on the scroll bar. Click an error location to navigate to the
corresponding source code.

To disable analysis on save, select Polyspace > Preferences and select Manually for Analysis
launch mode.

If results do not appear, see “Troubleshoot Failed Analysis or Unexpected Results in Polyspace as You
Code” on page 5-83.

6 Review Results in Polyspace as You Code

6-10

Run Analysis on Demand
If you disable automatic launch on save, you can also explicitly start a Polyspace analysis. To start an
analysis, right-click the source code and select Run Polyspace as You Code.

Review Results
After analysis, the results appear in two forms:

• As source code markers (with a line below source code tokens).

You can click the circle on the left next to an underlined source code token to see more details
about a result.

• In a list on the Results List pane.

If the list does not open automatically, select Polyspace > Show View > Show Results List. If
you select a result in this list, you see further details of the result on the Result Details pane.

 Run Polyspace as You Code in Eclipse and Review Results

6-11

Justify Results Using Code Annotations
If you decide not to fix a result, you can add code annotations to the result to avoid having to fix the
result again. If the annotations follow a specific syntax, subsequent Polyspace as You Code runs can
read these annotations and suppress the corresponding results.

To add a code annotation, right-click the result on the Results List pane and select Annotate Code
and Hide Result. The annotation is entered on the same line as the result.

See also:

• “Hide Known or Acceptable Polyspace Results” on page 2-5
• “Short Names of Bug Finder Defect Checkers” on page 2-12

View Context-Sensitive Help for Result
You can see more information on a type of result by visiting the context-sensitive help page for the
result.

• To open the context-sensitive help for a result, first open the Result Details pane for a result.
Then, click the question mark icon next to the result details.

• To navigate directly to the Fix section of the context-sensitive help for a result, click the wrench
icon next to the result details.

6 Review Results in Polyspace as You Code

6-12

You can also open the full searchable documentation for the Polyspace as You Code extension from
within Eclipse. To open the documentation, select Polyspace > Help.

Configure Checkers and Other Settings
By default, Polyspace as You Code checks for defects that are likely to be of most interest to
developers. You can expand the set of checkers and perform other configuration through the
Polyspace as You Code plugin settings in Eclipse. To open the settings, select Polyspace >
Preferences or Polyspace > Configure Project.

For instance, you might want to:

• Enable or disable certain checkers.

See “Configure Checkers for Polyspace as You Code in Eclipse” on page 5-57.
• See only new results.

See “Baseline Polyspace as You Code Results in Eclipse” on page 5-50.

For the full list of settings, see “Configure Polyspace as You Code Plugin in Eclipse” on page 5-17.

 Run Polyspace as You Code in Eclipse and Review Results

6-13

Run Polyspace as You Code from Command Line and Export
Results

You can run Polyspace as You Code on source files directly at the command line.

For IDEs that are not directly supported with a Polyspace as You Code plugin, you can open a
terminal within the IDE and run the commands, or create a menu item to run the commands on the
file currently open in the IDE. You can even incorporate these commands in a makefile, so that
building your code also runs static analysis on the code. See also “Integrate Polyspace as You Code in
IDEs and Editors Without Plugins” on page 6-17.

Add Install Folder to Path
To avoid typing the full path to Polyspace as You Code commands, add the paths to these commands
to the PATH environment variable on your operating system.

The paths in the default installation folder are the following:

Windows C:\Program Files\Polyspace as You Code\R2021a\polyspace
\bin

Linux /usr/local/PolyspaceAsYouCode/R2021a/polyspace/bin

After you add the paths, you can enter commands such as the following in a terminal without errors:

polyspace-bug-finder-access -help

Run Analysis and See Results on Console
To run Polyspace as You Code, use the polyspace-bug-finder-access command. Export the
results to the console using the polyspace-results-export command.

polyspace-bug-finder-access -sources filename
polyspace-results-export -format console

In this example, the polyspace-bug-finder-access command generates results in the current
folder. The polyspace-results-export command reads results from the current folder and
exports to the console.

The analysis typically takes a few seconds to complete (slightly longer for C++ files). If the analysis
fails to complete, further details of the error appear on the console. You can use the option -no-
quiet to see a more detailed analysis log on the console.

Store Results in Specific Folder
To use a specific results folder resultsFolder instead of the current folder, change the preceding
lines as follows:

6 Review Results in Polyspace as You Code

6-14

polyspace-bug-finder-access -sources filename -results-dir resultsFolder
polyspace-results-export -format console -results-dir resultsFolder

Export Results to JSON Format (SARIF Output)
Instead of displaying analysis results on the console, you can export the results to a JSON file. You
can then parse this file using a JSON parser method in any language that you want.

polyspace-bug-finder-access -sources filename.c
polyspace-results-export -format json-sarif -output-name outputFilePath

Here, outputFilePath is the full path to the JSON file.

The JSON format follows the standard notation provided by the OASIS Static Analysis Results
Interchange Format (SARIF).

Specify Analysis Options by Using Options Files
To adapt the Polyspace analysis configuration to your development environment and requirements,
you have to modify the default configuration through command-line options such as -compiler.
Options files are a convenient way to collect multiple options together and reuse them across
projects.

Options files are text files with one option per line. For instance, the content of an options file can
look like this:

Options for Polyspace analysis
Options apply to all projects in Controller module
-compiler visual16.x
-D _WIN32
-checkers-activation-file "Z:\utils\checkers.xml"

Specify an options file using the option -options-file. For instance:

polyspace-bug-finder-access -sources file.c -options-file "Z:\utils\polyspace\options.txt"

See also “Options Files for Polyspace Analysis” on page 5-22. For all options available with Polyspace
as You Code, see “Polyspace as You Code Analysis Engine Options”.

Create Options File by Analyzing Build
Instead of entering options by hand in an options file, you can create an options file with all Polyspace
options required for compilation by analyzing your build system. For instance, you can trace your
build command and save the options in a file buildOptions.txt that you can use for the
subsequent analysis.

polyspace-configure -no-sources -output-options-file buildOptions.txt buildCommand
polyspace-bug-finder-access -sources file.c -options-file buildOptions.txt

 Run Polyspace as You Code from Command Line and Export Results

6-15

Here, buildCommand is a build command that performs a full build of your source code, for instance,
make -B or make --always-make. For build systems that can output compilation options in the
JSON compilation database format, you can obtain the options from the JSON file:
polyspace-configure -no-sources -output-options-file buildOptions.txt -compilation-database jsonFile

Here, jsonFile is the full path to the compilation database JSON file.

You can also append a second options file with options related to the analysis such as checkers. For
instance, if the second options file is called checkersOptions.txt, you can run Polyspace as You
Code as follows:

polyspace-bug-finder-access -sources file.c -options-file buildOptions.txt -options-file checkersOptions.txt

See Also
polyspace-bug-finder-access | polyspace-configure | polyspace-results-export

More About
• “Options Files for Polyspace Analysis” on page 5-22
• “Integrate Polyspace as You Code in IDEs and Editors Without Plugins” on page 6-17

6 Review Results in Polyspace as You Code

6-16

Integrate Polyspace as You Code in IDEs and Editors Without
Plugins

Polyspace as You Code supports these IDEs with extensions or plugins: Visual Studio, Visual Studio
Code, and Eclipse. Even if an IDE is not explicitly supported with a Polyspace as You Code plugin, you
can open a console within the IDE and run Polyspace as You Code commands, or create a menu item
to run the commands on the file currently open in the IDE.

This topic demonstrates how to integrate Polyspace as You Code in a simple editor such as Notepad+
+. You can use the principles here to integrate Polyspace as You Code in most editors or IDEs.

Overview of Approach
In supported IDEs, a Polyspace as You Code extension allows you to analyze the file that is currently
active in the IDE and see results within the IDE (as source code markers or in a list). In an
unsupported IDE or editor, you can partly emulate this workflow, that is, run analysis within the IDE
and view results. The workflow consists of two steps:

• Running analysis and exporting results

Most IDEs or editors provides environment variables that resolve to the current file path. You can
create menu items that execute a script which runs the polyspace-bug-finder-access
command on this path. In the same script, you can export the results to the IDE console.

• Parsing console output to allow navigation to line

Each Polyspace as You Code result in the console output starts with a line in this format:

filepath:lineNumber:columnNumber

Here, filepath is the path to the current file, lineNumber is the line number of the result, and
columnNumber is the column that starts the token with the result. For instance:

C:\MyProj\myFile.c:17:31:

indicates that the file C:\MyProj\myFile.c contains a result on line 17, starting from column
31. If you can parse the console output, you can enable a navigation to line 31 to the start of the
token containing the result.

Integration Steps
This example shows an integration of Polyspace as You Code in a simple editor such as Notepad++.
You can follow similar integration steps in other editors such as GNU Emacs, Sublime Text, and so on.

Step 1: Set Up Script Runs from Within Editor

In Notepad++, you can use a plugin such as NppExec that allows you to execute any script from
within the editor. The editor also provides the environment variable $(FULL_CURRENT_PATH) that
resolves to the file that is currently active in the IDE.

 Integrate Polyspace as You Code in IDEs and Editors Without Plugins

6-17

The simplest script that can be run within the plugin can be the following:

cd $(CURRENT_DIRECTORY)
set POLYSPACE_EXECUTABLES_FOLDER=C:\Program Files\Polyspace as You Code\R2021a\polyspace\bin
set POLYSPACE_ENGINE=$(POLYSPACE_EXECUTABLES_FOLDER)\polyspace-bug-finder-access.exe
set POLYSPACE_REPORT_EXPORTER=$(POLYSPACE_EXECUTABLES_FOLDER)\polyspace-results-export.exe
$(POLYSPACE_ENGINE) -sources $(FULL_CURRENT_PATH)
$(POLYSPACE_REPORT_EXPORTER) -results-dir . -format console

In practice, you might want to specify additional analysis options using an options file. If the options
file is called polyspace_options.txt, the command to run Polyspace as You Code in the preceding
script can be replaced with:

$(POLYSPACE_ENGINE) -sources $(FULL_CURRENT_PATH) -options-file polyspace_options.txt

See also “Options Files for Polyspace Analysis” on page 5-22.

For other command-line examples, see “Run Polyspace as You Code from Command Line and Export
Results” on page 6-14. For instance, instead of exporting to the console directly, you can export the
results to a JSON format, use a JSON parser to package the results, and then export them to the
console or use them in some other way.

Step 2: Set Up Parsing of Console Output

The NppExec plugin allows you to parse console output and navigate to the appropriate line of code.
You can also optionally apply specific formatting to the console output.

For instance, your console output can look like the following:

You can set up the output so that clicking a link directly takes you to the start of the relevant token on
the relevant line of code.

To set up this presentation of results, select Plugins > NppExec and then select the Console
Output Filters option. The following options allow the previous presentation of results:

6 Review Results in Polyspace as You Code

6-18

The first highlight mask indicates that lines having the format

...:...:...

contain the absolute path to the file before the first colon, the line number between the first and
second colon, and the column number (or character number) after the second colon. The mask reads
the information (file, line and column), underlines these lines and colors them blue.

The second highlight mask simply bolds lines having the format

...(...)

These lines contain the result name, for instance, the name of a defect.

Further Exploration
The official Polyspace as You Code extensions enable other actions such as analyzing build
commands, configuring checkers, and downloading baselines from the Polyspace Access web server.
In a real development environment, you want to analyze your build commands to emulate your
compilation toolchain as closely as possible, configure the checkers that are most meaningful to you,
and baseline results so that you focus only on new results coming from your changes.

You can extend the approach described here to create menu items in your IDE or editor for all these
actions. For more information on these workflows from the command line, see:

• “Generate Build Options for Polyspace as You Code Analysis at the Command Line” on page 5-38
• “Configure Checkers for Polyspace as You Code at the Command Line” on page 5-68
• “Baseline Polyspace as You Code Results on Command Line” on page 5-53

With your IDE or editor set up for Polyspace as You Code, you can create a quality gate for
submission. You can set up a configuration with checkers for which you do not want any finding in
your submission. Before submitting a file, you can make sure that you have fixed all findings from
those checkers.

See Also
polyspace-bug-finder-access | polyspace-results-export

 Integrate Polyspace as You Code in IDEs and Editors Without Plugins

6-19

Coding Rule Sets and Concepts

• “Polyspace MISRA C:2004 and MISRA AC AGC Checkers” on page 7-2
• “MISRA C:2004 and MISRA AC AGC Coding Rules” on page 7-3
• “Polyspace MISRA C:2012 Checkers” on page 7-38
• “Essential Types in MISRA C:2012 Rules 10.x” on page 7-39
• “Unsupported MISRA C:2012 Guidelines” on page 7-41
• “Polyspace MISRA C++ Checkers” on page 7-42
• “Unsupported MISRA C++ Coding Rules” on page 7-43
• “Polyspace JSF AV C++ Checkers” on page 7-47
• “JSF AV C++ Coding Rules” on page 7-48

7

Polyspace MISRA C:2004 and MISRA AC AGC Checkers
The Polyspace MISRA C:2004 checker helps you comply with the MISRA C 2004 coding standard.1

When MISRA C rules are violated, the MISRA C checker enables Polyspace software to provide
messages with information about the rule violations. Most messages are reported during the compile
phase of an analysis.

The MISRA C checker can check nearly all of the 142 MISRA C:2004 rules.

The MISRA AC AGC checker checks rules from the OBL (obligatory) and REC (recommended)
categories specified by MISRA AC AGC Guidelines for the Application of MISRA-C:2004 in the
Context of Automatic Code Generation.

There are subsets of MISRA coding rules that can have a direct or indirect impact on the selectivity
(reliability percentage) of your results. When you set up rule checking, you can select these subsets
directly. These subsets are defined in:

• “Software Quality Objective Subsets (C:2004)” on page 1-43
• “Software Quality Objective Subsets (AC AGC)” on page 1-47

Note The Polyspace MISRA checker is based on MISRA C:2004, which also incorporates MISRA C
Technical Corrigendum.

See Also

More About
• “MISRA C:2004 and MISRA AC AGC Coding Rules” on page 7-3

1. MISRA and MISRA C are registered trademarks of MIRA Ltd., held on behalf of the MISRA Consortium.

7 Coding Rule Sets and Concepts

7-2

MISRA C:2004 and MISRA AC AGC Coding Rules
In this section...
“Supported MISRA C:2004 and MISRA AC AGC Rules” on page 7-3
“Troubleshooting” on page 7-3
“List of Supported Coding Rules” on page 7-3
“Unsupported MISRA C:2004 and MISRA AC AGC Rules” on page 7-36

Supported MISRA C:2004 and MISRA AC AGC Rules
The following tables list MISRA C:2004 coding rules that the Polyspace coding rules checker
supports. Details regarding how the software checks individual rules and any limitations on the scope
of checking are described in the “Polyspace Specification” column.

Note The Polyspace coding rules checker:

• Supports MISRA-C:2004 Technical Corrigendum 1 for rules 4.1, 5.1, 5.3, 6.1, 6.3, 7.1, 9.2, 10.5,
12.6, 13.5, and 15.0.

• Checks rules specified by MISRA AC AGC Guidelines for the Application of MISRA-C:2004 in the
Context of Automatic Code Generation.

The software reports most violations during the compile phase of an analysis. However, the software
detects violations of rules 9.1 (Non-initialized variable), 12.11 (one of the overflow checks)
using -scalar-overflows-checks signed-and-unsigned), 13.7 (dead code), 14.1 (dead code),
16.2 and 21.1 during code analysis, and reports these violations as run-time errors.

Note Some violations of rules 13.7 and 14.1 are reported during the compile phase of analysis.

Troubleshooting
If you expect a rule violation but do not see it, check out .

List of Supported Coding Rules
• “Environment” on page 7-5
• “Language Extensions” on page 7-6
• “Documentation” on page 7-9
• “Character Sets” on page 7-9
• “Identifiers” on page 7-9
• “Types” on page 7-11
• “Constants” on page 7-11
• “Declarations and Definitions” on page 7-12

 MISRA C:2004 and MISRA AC AGC Coding Rules

7-3

• “Initialisation” on page 7-15
• “Arithmetic Type Conversion” on page 7-16
• “Pointer Type Conversion” on page 7-19
• “Expressions” on page 7-20
• “Control Statement Expressions” on page 7-22
• “Control Flow” on page 7-25
• “Switch Statements” on page 7-27
• “Functions” on page 7-28
• “Pointers and Arrays” on page 7-29
• “Structures and Unions” on page 7-30
• “Preprocessing Directives” on page 7-30
• “Standard Libraries” on page 7-33
• “Runtime Failures” on page 7-36

7 Coding Rule Sets and Concepts

7-4

Environment

N. MISRA Definition Messages in report file Polyspace Implementation
1.1 All code shall conform to ISO

9899:1990 “Programming
languages - C”, amended and
corrected by ISO/IEC 9899/
COR1:1995, ISO/IEC 9899/
AMD1:1995, and ISO/IEC 9899/
COR2:1996.

The text All code shall conform
to ISO 9899:1990 Programming
languages C, amended and
corrected by ISO/IEC 9899/
COR1:1995, ISO/IEC 9899/
AMD1:1995, and ISO/IEC 9899/
COR2:1996 precedes each of the
following messages:

• ANSI® C does not allow
‘#include_next'

• ANSI C does not allow
macros with variable
arguments list

• ANSI C does not allow
‘#assert’

• ANSI C does not allow
'#unassert'

• ANSI C does not allow
testing assertions

• ANSI C does not allow
'#ident'

• ANSI C does not allow
'#sccs'

• text following '#else' violates
ANSI standard.

• text following '#endif'
violates ANSI standard.

• text following '#else' or
'#endif' violates ANSI
standard.

All the supported extensions
lead to a violation of this MISRA
rule. Standard compilation error
messages do not lead to a
violation of this MISRA rule and
remain unchanged.

 MISRA C:2004 and MISRA AC AGC Coding Rules

7-5

N. MISRA Definition Messages in report file Polyspace Implementation
1.1
(cont.)

 The text All code shall conform
to ISO 9899:1990 Programming
languages C, amended and
corrected by ISO/IEC 9899/
COR1:1995, ISO/IEC 9899/
AMD1:1995, and ISO/IEC 9899/
COR2:1996 precedes each of the
following messages:

• ANSI C90 forbids 'long long
int' type.

• ANSI C90 forbids 'long
double' type.

• ANSI C90 forbids long long
integer constants.

• Keyword 'inline' should not
be used.

• Array of zero size should not
be used.

• Integer constant does not fit
within unsigned long int.

• Integer constant does not fit
within long int.

• Too many nesting levels of
#includes: N1. The limit is
N0.

• Too many macro definitions:
N1. The limit is N0.

• Too many nesting levels for
control flow: N1. The limit is
N0.

• Too many enumeration
constants: N1. The limit is N0.

Language Extensions

N. MISRA Definition Messages in report file Polyspace Implementation
2.1 Assembly language shall be

encapsulated and isolated.
Assembly language shall be
encapsulated and isolated.

No warnings if code is
encapsulated in the following:

• asm functions or asm
pragma

• Macros

7 Coding Rule Sets and Concepts

7-6

N. MISRA Definition Messages in report file Polyspace Implementation
2.2 Source code shall only use /* */

style comments
C++ comments shall not be
used.

C++ comments are handled as
comments but lead to a violation
of this MISRA rule

Note: This rule cannot be
annotated in the source code.

2.3 The character sequence /* shall
not be used within a comment

The character sequence /* shall
not appear within a comment.

This rule violation is also raised
when the character sequence /*
inside a C++ comment.

Note: This rule cannot be
annotated in the source code.

 MISRA C:2004 and MISRA AC AGC Coding Rules

7-7

N. MISRA Definition Messages in report file Polyspace Implementation
2.4 Sections of code should not be

"commented out"
Sections of code should not be
"commented out"

The checker uses internal
heuristics to detect commented
out code. For instance,
characters such as #, ;, { or }
indicate comments that might
potentially contain code. These
comments are then evaluated
against other metrics to
determine the likelihood of code
masquerading as comment. For
instance, several successive
words without a symbol in
between reduces this likelihood.

The checker does not flag the
following comments even if they
contain code:

• Doxygen comments
beginning with /** or /*!.

• Comments that repeat the
same symbol several times,
for instance, the symbol =
here:

/* ==========
 * A comment
 * ==========*/

• Comments on the first line of
a file.

• Comments that mix the C
style (/* */) and C++ style
(//).

The checker considers that these
comments are meant for
documentation purposes or
entered deliberately with some
forethought.

7 Coding Rule Sets and Concepts

7-8

Documentation

Rule MISRA Definition Messages in report file Polyspace Implementation
3.4 All uses of the #pragma directive

shall be documented and
explained.

All uses of the #pragma directive
shall be documented and
explained.

To check this rule, you must list
the pragmas that are allowed in
source files by using the option
Allowed pragmas (-
allowed-pragmas). If
Polyspace finds a pragma not in
the allowed pragma list, a
violation is raised.For more on
analysis options, see the
documentation for Polyspace
Bug Finder or Polyspace Bug
Finder Server

Character Sets

N. MISRA Definition Messages in report file Polyspace Implementation
4.1 Only those escape sequences

which are defined in the ISO C
standard shall be used.

\<character> is not an ISO C
escape sequence Only those
escape sequences which are
defined in the ISO C standard
shall be used.

4.2 Trigraphs shall not be used. Trigraphs shall not be used. Trigraphs are handled and
converted to the equivalent
character but lead to a violation
of the MISRA rule

Identifiers

N. MISRA Definition Messages in report file Polyspace Implementation
5.1 Identifiers (internal and external)

shall not rely on the significance
of more than 31 characters

Identifier 'XX' should not rely on
the significance of more than 31
characters.

All identifiers (global, static and
local) are checked.

For easier review, the rule
checker shows all identifiers that
have the same first 31
characters as one rule violation.
You can see all instances of
conflicting identifier names in
the event history of that rule
violation.

This checker is deactivated in a
default Polyspace as You Code
analysis. See “Checkers
Deactivated in Polyspace as You
Code Default Analysis” on page
5-80.

 MISRA C:2004 and MISRA AC AGC Coding Rules

7-9

N. MISRA Definition Messages in report file Polyspace Implementation
5.2 Identifiers in an inner scope shall

not use the same name as an
identifier in an outer scope, and
therefore hide that identifier.

• Local declaration of XX is
hiding another identifier.

• Declaration of parameter XX
is hiding another identifier.

Assumes that rule 8.1 is not
violated.

5.3 A typedef name shall be a unique
identifier

{typedef name}'%s' should not
be reused. (already used as
{typedef name} at %s:%d)

Warning when a typedef name is
reused as another identifier
name.

5.4 A tag name shall be a unique
identifier

{tag name}'%s' should not be
reused. (already used as {tag
name} at %s:%d)

Warning when a tag name is
reused as another identifier
name

This checker is deactivated in a
default Polyspace as You Code
analysis. See “Checkers
Deactivated in Polyspace as You
Code Default Analysis” on page
5-80.

5.5 No object or function identifier
with a static storage duration
should be reused.

{static identifier/parameter
name}’%s’ should not be reused.
(already used as {static
identifier/parameter name} with
static storage duration at
%s:%d)

Warning when a static name is
reused as another identifier
name

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

5.6 No identifier in one name space
should have the same spelling as
an identifier in another name
space, with the exception of
structure and union member
names.

{member name}'%s' should not
be reused. (already used as
{member name} at %s:%d)

Warning when an idf in a
namespace is reused in another
namespace

This checker is deactivated in a
default Polyspace as You Code
analysis. See “Checkers
Deactivated in Polyspace as You
Code Default Analysis” on page
5-80.

5.7 No identifier name should be
reused.

{identifier}'%s' should not be
reused. (already used as
{identifier} at %s:%d)

No violation reported when:

• Different functions have
parameters with the same
name

• Different functions have local
variables with the same name

• A function has a local
variable that has the same
name as a parameter of
another function

7 Coding Rule Sets and Concepts

7-10

Types

N. MISRA Definition Messages in report file Polyspace Implementation
6.1 The plain char type shall be used

only for the storage and use of
character values

Only permissible operators on
plain chars are '=', '==' or '!='
operators, explicit casts to
integral types and '?' (for the
2nd and 3rd operands)

Warning when a plain char is
used with an operator other than
=, ==, !=, explicit casts to
integral types, or as the second
or third operands of the ?
operator.

6.2 Signed and unsigned char type
shall be used only for the storage
and use of numeric values.

• Value of type plain char is
implicitly converted to signed
char.

• Value of type plain char is
implicitly converted to
unsigned char.

• Value of type signed char is
implicitly converted to plain
char.

• Value of type unsigned char
is implicitly converted to
plain char.

Warning if value of type plain
char is implicitly converted to
value of type signed char or
unsigned char.

6.3 typedefs that indicate size and
signedness should be used in
place of the basic types

typedefs that indicate size and
signedness should be used in
place of the basic types.

No warning is given in typedef
definition.

6.4 Bit fields shall only be defined to
be of type unsigned int or signed
int.

Bit fields shall only be defined to
be of type unsigned int or signed
int.

6.5 Bit fields of type signed int shall
be at least 2 bits long.

Bit fields of type signed int shall
be at least 2 bits long.

No warning on anonymous
signed int bitfields of width 0 -
Extended to all signed bitfields
of size <= 1 (if Rule 6.4 is
violated).

Constants

N. MISRA Definition Messages in report file Polyspace Implementation
7.1 Octal constants (other than zero)

and octal escape sequences shall
not be used.

• Octal constants other than
zero and octal escape
sequences shall not be used.

• Octal constants (other than
zero) should not be used.

• Octal escape sequences
should not be used.

 MISRA C:2004 and MISRA AC AGC Coding Rules

7-11

Declarations and Definitions

N. MISRA Definition Messages in report file Polyspace Implementation
8.1 Functions shall have prototype

declarations and the prototype
shall be visible at both the
function definition and call.

• Function XX has no complete
prototype visible at call.

• Function XX has no prototype
visible at definition.

Prototype visible at call must be
complete.

8.2 Whenever an object or function is
declared or defined, its type shall
be explicitly stated

Whenever an object or function is
declared or defined, its type shall
be explicitly stated.

8.3 For each function parameter the
type given in the declaration and
definition shall be identical, and
the return types shall also be
identical.

Definition of function 'XX'
incompatible with its declaration.

Assumes that rule 8.1 is not
violated. The rule is restricted to
compatible types. Can be turned
to Off

8.4 If objects or functions are
declared more than once their
types shall be compatible.

• If objects or functions are
declared more than once their
types shall be compatible.

• Global declaration of 'XX'
function has incompatible
type with its definition.

• Global declaration of 'XX'
variable has incompatible type
with its definition.

Violations of this rule might be
generated during the link phase.

Bug Finder and Code Prover
check this coding rule differently.
The analyses can produce
different results.

This checker is deactivated in a
default Polyspace as You Code
analysis. See “Checkers
Deactivated in Polyspace as You
Code Default Analysis” on page
5-80.

8.5 There shall be no definitions of
objects or functions in a header
file

• Object 'XX' should not be
defined in a header file.

• Function 'XX' should not be
defined in a header file.

• Fragment of function should
not be defined in a header file.

Tentative definitions are
considered as definitions. For
objects with file scope, tentative
definitions are declarations that:

• Do not have initializers.
• Do not have storage class
specifiers, or have the static
specifier

8.6 Functions shall always be
declared at file scope.

Function 'XX' should be declared
at file scope.

This rule maps to ISO/IEC TS
17961 ID addrescape.

8.7 Objects shall be defined at block
scope if they are only accessed
from within a single function

Object 'XX' should be declared at
block scope.

Restricted to static objects.

7 Coding Rule Sets and Concepts

7-12

N. MISRA Definition Messages in report file Polyspace Implementation
8.8 An external object or function

shall be declared in one file and
only one file

Function/Object 'XX' has external
declarations in multiple files.

Restricted to explicit extern
declarations (tentative definitions
are ignored).

Polyspace considers that
variables or functions declared
extern in a non-header file
violate this rule.

Bug Finder and Code Prover
check this coding rule differently.
The analyses can produce
different results.

This checker is deactivated in a
default Polyspace as You Code
analysis. See “Checkers
Deactivated in Polyspace as You
Code Default Analysis” on page
5-80.

8.9 An identifier with external
linkage shall have exactly one
external definition.

• Procedure/Global variable XX
multiply defined.

• Forbidden multiple tentative
definitions for object XX

• Global variable has multiple
tentative definitions

• Undefined global variable XX

The checker flags multiple
definitions only if the definitions
occur in different files.

No warnings appear on
predefined symbols.

Bug Finder and Code Prover
check this coding rule differently.
The analyses can produce
different results.

This checker is deactivated in a
default Polyspace as You Code
analysis. See “Checkers
Deactivated in Polyspace as You
Code Default Analysis” on page
5-80.

 MISRA C:2004 and MISRA AC AGC Coding Rules

7-13

N. MISRA Definition Messages in report file Polyspace Implementation
8.10 All declarations and definitions of

objects or functions at file scope
shall have internal linkage unless
external linkage is required

Function/Variable XX should have
internal linkage.

Assumes that 8.1 is not violated.
No warning if 0 uses.

If your code does not contain a
main function and you use
options such as -main-generator-
writes-variables with value
custom to explicitly specify a set
of variables to initialize, the
checker does not flag those
variables. The checker assumes
that in a real application, the file
containing the main must
initialize the variables in addition
to any file that currently uses
them. Therefore, the variables
must be used in more than one
translation unit.

Bug Finder and Code Prover
check this coding rule differently.
The analyses can produce
different results.

This checker is deactivated in a
default Polyspace as You Code
analysis. See “Checkers
Deactivated in Polyspace as You
Code Default Analysis” on page
5-80.

8.11 The static storage class specifier
shall be used in definitions and
declarations of objects and
functions that have internal
linkage

static storage class specifier
should be used on internal
linkage symbol XX.

8.12 When an array is declared with
external linkage, its size shall be
stated explicitly or defined
implicitly by initialization

Size of array 'XX' should be
explicitly stated.

7 Coding Rule Sets and Concepts

7-14

Initialisation

N. MISRA Definition Messages in report file Polyspace Implementation
9.1 All automatic variables shall have

been assigned a value before
being used.

 Checked during code analysis.

Violations displayed as Non-
initialized variable results.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results. In
Code Prover, you can also see a
difference in results based on
your choice for the option
Verification level (-to).
See the documentation for
Polyspace Bug Finder or
Polyspace Bug Finder Server for
more on analysis options and
how to check for coding
standard violations..

9.2 Braces shall be used to indicate
and match the structure in the
nonzero initialisation of arrays
and structures.

Braces shall be used to indicate
and match the structure in the
nonzero initialization of arrays
and structures.

9.3 In an enumerator list, the =
construct shall not be used to
explicitly initialize members other
than the first, unless all items are
explicitly initialized.

In an enumerator list, the =
construct shall not be used to
explicitly initialize members
other than the first, unless all
items are explicitly initialized.

 MISRA C:2004 and MISRA AC AGC Coding Rules

7-15

Arithmetic Type Conversion

N. MISRA Definition Messages in report file Polyspace Implementation
10.1 The value of an expression of

integer type shall not be implicitly
converted to a different
underlying type if:

• it is not a conversion to a
wider integer type of the same
signedness, or

• the expression is complex, or
• the expression is not constant

and is a function argument, or
• the expression is not constant

and is a return expression

• Implicit conversion of the
expression of underlying type
XX to the type XX that is not
a wider integer type of the
same signedness.

• Implicit conversion of one of
the binary operands whose
underlying types are XX and
XX

• Implicit conversion of the
binary right hand operand of
underlying type XX to XX
that is not an integer type.

• Implicit conversion of the
binary left hand operand of
underlying type XX to XX that
is not an integer type.

• Implicit conversion of the
binary right hand operand of
underlying type XX to XX that
is not a wider integer type of
the same signedness or
Implicit conversion of the
binary ? left hand operand of
underlying type XX to XX, but
it is a complex expression.

• Implicit conversion of
complex integer expression
of underlying type XX to XX.

• Implicit conversion of non-
constant integer expression
of underlying type XX in
function return whose
expected type is XX.

• Implicit conversion of non-
constant integer expression
of underlying type XX as
argument of function whose
corresponding parameter
type is XX.

ANSI C base types order (signed
char, short, int, long) defines
that T2 is wider than T1 if T2 is
on the right hand of T1 or T2 =
T1. The same interpretation is
applied on the unsigned version
of base types.

An expression of bool or enum
types has int as underlying type.

Plain char may have signed or
unsigned underlying type
(depending on Polyspace target
configuration or option setting).

The underlying type of a simple
expression of struct.bitfield is
the base type used in the bitfield
definition, the bitfield width is
not token into account and it
assumes that only signed |
unsigned int are used for bitfield
(Rule 6.4).

This rule violation is not
produced on operations
involving pointers.

No violation reported when:

• The implicit conversion is a
type widening, without
change of signedness of
integer

• The expression is an
argument expression or a
return expression

No violation reported when the
following are true:

• Implicit conversion applies to
a constant expression and is
a type widening, with a
possible change of
signedness of integer.

• The conversion does not
change the representation of

7 Coding Rule Sets and Concepts

7-16

N. MISRA Definition Messages in report file Polyspace Implementation
the constant value or the
result of the operation.

• The expression is an
argument expression or a
return expression or an
operand expression of a non-
bitwise operator.

Conversions of constants are not
reported for these cases to avoid
flagging too many violations. If
the constant can be represented
in both the original and
converted type, the conversion is
less of an issue.

10.2 The value of an expression of
floating type shall not be
implicitly converted to a different
type if

• it is not a conversion to a
wider floating type, or

• the expression is complex, or
• the expression is a function

argument, or
• the expression is a return

expression

• Implicit conversion of the
expression from XX to XX
that is not a wider floating
type.

• Implicit conversion of the
binary ? right hand operand
from XX to XX, but it is a
complex expression.

• Implicit conversion of the
binary ? right hand operand
from XX to XX that is not a
wider floating type or Implicit
conversion of the binary ? left
hand operand from XX to XX,
but it is a complex
expression.

• Implicit conversion of
complex floating expression
from XX to XX.

• Implicit conversion of
floating expression of XX type
in function return whose
expected type is XX.

• Implicit conversion of
floating expression of XX type
as argument of function
whose corresponding
parameter type is XX.

ANSI C base types order (float,
double) defines that T2 is wider
than T1 if T2 is on the right hand
of T1 or T2 = T1.

No violation reported when:

• The implicit conversion is a
type widening

• The expression is an
argument expression or a
return expression.

 MISRA C:2004 and MISRA AC AGC Coding Rules

7-17

N. MISRA Definition Messages in report file Polyspace Implementation
10.3 The value of a complex expression

of integer type may only be cast
to a type that is narrower and of
the same signedness as the
underlying type of the expression

Complex expression of
underlying type XX may only be
cast to narrower integer type of
same signedness, however the
destination type is XX.

• The rule checker raises a
defect only if the result of a
composite expression is cast
to a different or wider
essential type.

For instance, in this example,
a violation is shown in the
first assignment to i but not
the second. In the first
assignment, a composite
expression i+1 is directly
cast from a signed to an
unsigned type. In the second
assignment, the composite
expression is first cast to the
same type and then the result
is cast to a different type.

typedef int int32_T;
typedef unsigned char
 uint8_T;
...
...
int32_T i;
i = (uint8_T)(i+1);
/* Noncompliant */
i = (uint8_T)
 ((int32_T)(i+1));
 /* Compliant */

• ANSI C base types order
(signed char, short, int, long)
defines that T1 is narrower
than T2 if T2 is on the right
hand of T1 or T1 = T2. The
same methodology is applied
on the unsigned version of
base types.

• An expression of bool or
enum types has int as
underlying type.

• Plain char may have signed
or unsigned underlying type
(depending on target
configuration or option
setting).

• The underlying type of a
simple expression of
struct.bitfield is the base
type used in the bitfield
definition, the bitfield width

7 Coding Rule Sets and Concepts

7-18

N. MISRA Definition Messages in report file Polyspace Implementation
is not token into account and
it assumes that only signed,
unsigned int are used for
bitfield (Rule 6.4).

10.4 The value of a complex expression
of float type may only be cast to
narrower floating type

Complex expression of XX type
may only be cast to narrower
floating type, however the
destination type is XX.

ANSI C base types order (float,
double) defines that T1 is
narrower than T2 if T2 is on the
right hand of T1 or T2 = T1.

10.5 If the bitwise operator ~ and <<
are applied to an operand of
underlying type unsigned char or
unsigned short, the result shall be
immediately cast to the
underlying type of the operand

Bitwise [<<|~] is applied to the
operand of underlying type
[unsigned char|unsigned short],
the result shall be immediately
cast to the underlying type.

10.6 The “U” suffix shall be applied to
all constants of unsigned types

No explicit 'U suffix on constants
of an unsigned type.

 Warning when the type
determined from the value and
the base (octal, decimal or
hexadecimal) is unsigned and
there is no suffix u or U.

For example, when the size of
the int and long int data
types is 32 bits, the coding rule
checker will report a violation of
rule 10.6 for the following line:

int a = 2147483648;

There is a difference between
decimal and hexadecimal
constants when int and long
int are not the same size.

Pointer Type Conversion

N. MISRA Definition Messages in report file Polyspace Implementation
11.1 Conversion shall not be

performed between a pointer to a
function and any type other than
an integral type

Conversion shall not be
performed between a pointer to
a function and any type other
than an integral type.

Casts and implicit conversions
involving a function pointer.

Casts or implicit conversions
from NULL or (void*)0 do not
give any warning.

11.2 Conversion shall not be
performed between a pointer to
an object and any type other than
an integral type, another pointer
to a object type or a pointer to
void

Conversion shall not be
performed between a pointer to
an object and any type other
than an integral type, another
pointer to a object type or a
pointer to void.

There is also a warning on
qualifier loss

This rule maps to ISO/IEC TS
17961 ID alignconv.

 MISRA C:2004 and MISRA AC AGC Coding Rules

7-19

N. MISRA Definition Messages in report file Polyspace Implementation
11.3 A cast should not be performed

between a pointer type and an
integral type

A cast should not be performed
between a pointer type and an
integral type.

Exception on zero constant.
Extended to all conversions

This rule maps to ISO/IEC TS
17961 ID alignconv.

11.4 A cast should not be performed
between a pointer to object type
and a different pointer to object
type.

A cast should not be performed
between a pointer to object type
and a different pointer to object
type.

11.5 A cast shall not be performed that
removes any const or volatile
qualification from the type
addressed by a pointer

A cast shall not be performed
that removes any const or
volatile qualification from the
type addressed by a pointer

Extended to all conversions

Expressions

N. MISRA Definition Messages in report file Polyspace Implementation
12.1 Limited dependence should be

placed on C's operator
precedence rules in expressions

Limited dependence should be
placed on C's operator
precedence rules in expressions

12.2 The value of an expression shall
be the same under any order of
evaluation that the standard
permits.

• The value of 'sym' depends
on the order of evaluation.

• The value of volatile 'sym'
depends on the order of
evaluation because of multiple
accesses.

Rule 12.2 check assumes that no
assignment in expressions that
yield a Boolean values (rule
13.1).

The expression is a simple
expression of symbols. i = i++;
is a violation, but tab[2] =
tab[2]++; is not a violation.

12.3 The sizeof operator should not
be used on expressions that
contain side effects.

The sizeof operator should not
be used on expressions that
contain side effects.

No warning on volatile accesses

12.4 The right hand operand of a
logical && or || operator shall not
contain side effects.

The right hand operand of a
logical && or || operator shall not
contain side effects.

No warning on volatile accesses

12.5 The operands of a logical && or
|| shall be primary-expressions.

• operand of logical && is not a
primary expression

• operand of logical || is not a
primary expression

• The operands of a logical &&
or || shall be primary-
expressions.

During preprocessing, violations
of this rule are detected on the
expressions in #if directives.

Allowed exception on
associatively (a && b && c), (a ||
b || c).

7 Coding Rule Sets and Concepts

7-20

N. MISRA Definition Messages in report file Polyspace Implementation
12.6 Operands of logical operators

(&&, || and !) should be
effectively Boolean. Expression
that are effectively Boolean
should not be used as operands
to operators other than (&&, ||
or !).

• Operand of '!' logical operator
should be effectively Boolean.

• Left operand of '%s' logical
operator should be effectively
Boolean.

• Right operand of '%s' logical
operator should be effectively
Boolean.

• %s operand of '%s' is
effectively Boolean. Boolean
should not be used as
operands to operators other
than '&&', '||', '!', '=', '==', '!
=' and '?:'.

The operand of a logical operator
should be a Boolean data type.
Although the C standard does not
explicitly define the Boolean data
type, the standard implicitly
assumes the use of the Boolean
data type.

Some operators may return
Boolean-like expressions, for
example, (var == 0).

Consider the following code:

unsigned char flag;
if (!flag)

The rule checker reports a
violation of rule 12.6:

Operand of '!' logical
operator should be
effectively Boolean.

The operand flag is not a
Boolean but an unsigned char.

To be compliant with rule 12.6,
the code must be rewritten either
as

if (!(flag != 0))

or

if (flag == 0)

The use of the option -boolean-
types may increase or decrease
the number of warnings
generated.

12.7 Bitwise operators shall not be
applied to operands whose
underlying type is signed

• [~/Left Shift/Right shift/&]
operator applied on an
expression whose underlying
type is signed.

• Bitwise ~ on operand of
signed underlying type XX.

• Bitwise [<<|>>] on left hand
operand of signed underlying
type XX.

• Bitwise [& | ^] on two
operands of s

The underlying type for an
integer is signed when:

• it does not have a u or U suffix
• it is small enough to fit into a

64 bits signed number

 MISRA C:2004 and MISRA AC AGC Coding Rules

7-21

N. MISRA Definition Messages in report file Polyspace Implementation
12.8 The right hand operand of a shift

operator shall lie between zero
and one less than the width in
bits of the underlying type of the
left hand operand.

• shift amount is negative
• shift amount is bigger than 64
• Bitwise [<< >>] count out of

range [0 ..X] (width of the
underlying type XX of the left
hand operand - 1)..

The numbers that are
manipulated in preprocessing
directives are 64 bits wide so that
valid shift range is between 0 and
63

Check is also extended onto
bitfields with the field width or
the width of the base type when
it is within a complex expression

12.9 The unary minus operator shall
not be applied to an expression
whose underlying type is
unsigned.

• Unary - on operand of
unsigned underlying type XX.

• Minus operator applied to an
expression whose underlying
type is unsigned

The underlying type for an
integer is signed when:

• it does not have a u or U suffix
• it is small enough to fit into a

64 bits signed number
12.10 The comma operator shall not be

used.
The comma operator shall not be
used.

12.11 Evaluation of constant unsigned
expression should not lead to
wraparound.

Evaluation of constant unsigned
integer expressions should not
lead to wrap-around.

12.12 The underlying bit
representations of floating-point
values shall not be used.

The underlying bit
representations of floating-point
values shall not be used.

Warning when:

• A float pointer is cast as a
pointer to another data type.
Casting a float pointer as a
pointer to void does not
generate a warning.

• A float is packed with another
data type. For example:

union {
 float f;
 int i;
} …

12.13 The increment (++) and
decrement (--) operators should
not be mixed with other
operators in an expression

The increment (++) and
decrement (--) operators should
not be mixed with other
operators in an expression

Warning when ++ or -- operators
are not used alone.

Control Statement Expressions

N. MISRA Definition Messages in report file Polyspace Implementation
13.1 Assignment operators shall not

be used in expressions that yield
Boolean values.

Assignment operators shall not
be used in expressions that yield
Boolean values.

7 Coding Rule Sets and Concepts

7-22

N. MISRA Definition Messages in report file Polyspace Implementation
13.2 Tests of a value against zero

should be made explicit, unless
the operand is effectively Boolean

Tests of a value against zero
should be made explicit, unless
the operand is effectively Boolean

No warning is given on integer
constants. Example: if (2)

The use of the option -boolean-
types may increase or decrease
the number of warnings
generated.

13.3 Floating-point expressions shall
not be tested for equality or
inequality.

Floating-point expressions shall
not be tested for equality or
inequality.

Warning on directs tests only.

13.4 The controlling expression of a
for statement shall not contain
any objects of floating type

The controlling expression of a
for statement shall not contain
any objects of floating type

If for index is a variable symbol,
checked that it is not a float.

13.5 The three expressions of a for
statement shall be concerned
only with loop control

• 1st expression should be an
assignment.

• Bad type for loop counter
(XX).

• 2nd expression should be a
comparison.

• 2nd expression should be a
comparison with loop counter
(XX).

• 3rd expression should be an
assignment of loop counter
(XX).

• 3rd expression: assigned
variable should be the loop
counter (XX).

• The following kinds of for
loops are allowed:

(a) all three expressions shall
be present;

(b) the 2nd and 3rd
expressions shall be present
with prior initialization of the
loop counter;

(c) all three expressions shall
be empty for a deliberate
infinite loop.

Checked if the for loop index (V)
is a variable symbol; checked if V
is the last assigned variable in
the first expression (if present).
Checked if, in first expression, if
present, is assignment of V;
checked if in 2nd expression, if
present, must be a comparison of
V; Checked if in 3rd expression, if
present, must be an assignment
of V.

13.6 Numeric variables being used
within a for loop for iteration
counting should not be modified
in the body of the loop.

Numeric variables being used
within a for loop for iteration
counting should not be modified
in the body of the loop.

Detect only direct assignments if
the for loop index is known and if
it is a variable symbol.

 MISRA C:2004 and MISRA AC AGC Coding Rules

7-23

N. MISRA Definition Messages in report file Polyspace Implementation
13.7 Boolean operations whose results

are invariant shall not be
permitted

• Boolean operations whose
results are invariant shall not
be permitted. Expression is
always true.

• Boolean operations whose
results are invariant shall not
be permitted. Expression is
always false.

• Boolean operations whose
results are invariant shall not
be permitted.

During compilation, check
comparisons with at least one
constant operand.

Bug Finder and Code Prover
check this coding rule differently.
The analyses can produce
different results.

• Bug Finder flags some
violations of this rule through
the Dead code and Useless
if checkers.

• Code Prover does not use gray
code to flag violations of this
rule.

In Code Prover, you can also see
a difference in results based on
your choice for the option
Verification level (-to).
See the documentation for
Polyspace Bug Finder or
Polyspace Bug Finder Server for
more on analysis options and how
to check for coding standard
violations...

The rule violation appears when
you check whether an enum
variable value lies between its
lower and upper bound. The
violation appears even if you
increment or decrement the
variable outside its bounds, for
instance, in this for loop
condition:

enum ec {RED, BLUE, GREEN}
 col;
for(col=RED; col<=GREEN;
 col++)
{}

An enum variable can potentially
wrap around when incremented
outside its range and the loop
condition can be always true. To
avoid the rule violation, you can
cast the enum to an integer
before the comparison, for
instance:

7 Coding Rule Sets and Concepts

7-24

N. MISRA Definition Messages in report file Polyspace Implementation
enum ec {RED, BLUE, GREEN}
 col;
for(col=RED; (int)col<=GREEN;
 col++)
{}

Control Flow

N. MISRA Definition Messages in report file Polyspace Implementation
14.1 There shall be no unreachable

code.
There shall be no unreachable
code.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

14.2 All non-null statements shall
either have at least one side
effect however executed, or
cause control flow to change

All non-null statements shall
either:

• have at least one side effect
however executed, or

• cause control flow to change

14.3 Before preprocessing, a null
statement shall occur on a line by
itself; it may be followed by a
comment provided that the first
character following the null
statement is a white-space
character.

A null statement shall appear on
a line by itself

We assume that a ';' is a null
statement when it is the first
character on a line (excluding
comments). The rule is violated
when:

• there are some comments
before it on the same line.

• there is a comment
immediately after it

• there is something else than
a comment after the ';' on
the same line.

14.4 The goto statement shall not be
used.

The goto statement shall not be
used.

14.5 The continue statement shall not
be used.

The continue statement shall
not be used.

14.6 For any iteration statement there
shall be at most one break
statement used for loop
termination

For any iteration statement
there shall be at most one break
statement used for loop
termination

14.7 A function shall have a single
point of exit at the end of the
function

A function shall have a single
point of exit at the end of the
function

 MISRA C:2004 and MISRA AC AGC Coding Rules

7-25

N. MISRA Definition Messages in report file Polyspace Implementation
14.8 The statement forming the body

of a switch, while, do while or for
statement shall be a compound
statement

• The body of a do while
statement shall be a
compound statement.

• The body of a for statement
shall be a compound
statement.

• The body of a switch
statement shall be a
compound statement

14.9 An if (expression) construct shall
be followed by a compound
statement. The else keyword
shall be followed by either a
compound statement, or another
if statement

• An if (expression) construct
shall be followed by a
compound statement.

• The else keyword shall be
followed by either a
compound statement, or
another if statement

14.10 All if else if constructs should
contain a final else clause.

All if else if constructs should
contain a final else clause.

7 Coding Rule Sets and Concepts

7-26

Switch Statements

N. MISRA Definition Messages in report file Polyspace Implementation
15.0 The MISRA C switch syntax shall

be used.
switch statements syntax
normative restrictions.

Warning on declarations or any
statements before the first switch
case.

Warning on label or jump
statements in the body of switch
cases.

On the following example, the
rule is displayed in the log file at
line 3:

1 ...
2 switch(index) {
3 var = var + 1;
// RULE 15.0
// violated
4case 1: ...

The code between switch
statement and first case is
checked as dead code by
Polyspace. It follows ANSI
standard behavior.

This rule is not considered as a
required rule in the MISRA
C:2004 rules for generated code.
In generated code, if you find a
violation of rule 15.0 that does
not simultaneously violate a later
rule in this group, justify the
violation with appropriate
comments.

15.1 A switch label shall only be used
when the most closely-enclosing
compound statement is the body
of a switch statement

A switch label shall only be used
when the most closely-enclosing
compound statement is the body
of a switch statement

15.2 An unconditional break statement
shall terminate every non-empty
switch clause

An unconditional break statement
shall terminate every non-empty
switch clause

Warning for each non-compliant
case clause.

15.3 The final clause of a switch
statement shall be the default
clause

The final clause of a switch
statement shall be the default
clause

15.4 A switch expression should not
represent a value that is
effectively Boolean

A switch expression should not
represent a value that is
effectively Boolean

The use of the option -boolean-
types may increase the number
of warnings generated.

 MISRA C:2004 and MISRA AC AGC Coding Rules

7-27

N. MISRA Definition Messages in report file Polyspace Implementation
15.5 Every switch statement shall

have at least one case clause
Every switch statement shall
have at least one case clause

Functions

N. MISRA Definition Messages in report file Polyspace Implementation
16.1 Functions shall not be defined

with variable numbers of
arguments.

Function XX should not be
defined as varargs.

16.2 Functions shall not call
themselves, either directly or
indirectly.

Function %s should not call itself. The checker reports each
function that calls itself, directly
or indirectly. Even if several
functions are involved in one
recursion cycle, each function is
individually reported.

You can calculate the total
number of recursion cycles using
the code complexity metric
Number of Recursions.

16.3 Identifiers shall be given for all of
the parameters in a function
prototype declaration.

Identifiers shall be given for all of
the parameters in a function
prototype declaration.

Assumes Rule 8.6 is not violated.

16.4 The identifiers used in the
declaration and definition of a
function shall be identical.

The identifiers used in the
declaration and definition of a
function shall be identical.

Assumes that rules 8.8, 8.1 and
16.3 are not violated.

All occurrences are detected.
16.5 Functions with no parameters

shall be declared with parameter
type void.

Functions with no parameters
shall be declared with parameter
type void.

Definitions are also checked.

16.6 The number of arguments passed
to a function shall match the
number of parameters.

• Too many arguments to XX.
• Insufficient number of

arguments to XX.

Assumes that rule 8.1 is not
violated.

This rule maps to ISO/IEC TS
17961 ID argcomp.

16.7 A pointer parameter in a function
prototype should be declared as
pointer to const if the pointer is
not used to modify the addressed
object.

Pointer parameter in a function
prototype should be declared as
pointer to const if the pointer is
not used to modify the addressed
object.

Warning if a non-const pointer
parameter is either not used to
modify the addressed object or is
passed to a call of a function that
is declared with a const pointer
parameter.

16.8 All exit paths from a function
with non-void return type shall
have an explicit return statement
with an expression.

Missing return value for non-void
function XX.

Warning when a non-void
function is not terminated with
an unconditional return with an
expression.

7 Coding Rule Sets and Concepts

7-28

N. MISRA Definition Messages in report file Polyspace Implementation
16.9 A function identifier shall only be

used with either a preceding &,
or with a parenthesized
parameter list, which may be
empty.

Function identifier XX should be
preceded by a & or followed by a
parameter list.

16.10 If a function returns error
information, then that error
information shall be tested.

If a function returns error
information, then that error
information shall be tested.

The checker flags functions with
non-void return if the return
value is not used or not explicitly
cast to a void type.

The checker does not flag the
functions memcpy, memset,
memmove, strcpy, strncpy,
strcat, strncat because these
functions simply return a pointer
to their first arguments.

Pointers and Arrays

N. MISRA Definition Messages in report file Polyspace Implementation
17.1 Pointer arithmetic shall only be

applied to pointers that address
an array or array element.

Pointer arithmetic shall only be
applied to pointers that address
an array or array element.

17.2 Pointer subtraction shall only be
applied to pointers that address
elements of the same array

Pointer subtraction shall only be
applied to pointers that address
elements of the same array.

17.3 >, >=, <, <= shall not be applied
to pointer types except where
they point to the same array.

>, >=, <, <= shall not be applied
to pointer types except where
they point to the same array.

17.4 Array indexing shall be the only
allowed form of pointer
arithmetic.

Array indexing shall be the only
allowed form of pointer
arithmetic.

Warning on:

• Operations on pointers. (p+I,
I+p, and p-I, where p is a
pointer and I an integer).

• Array indexing on nonarray
pointers.

17.5 A type should not contain more
than 2 levels of pointer
indirection

A type should not contain more
than 2 levels of pointer
indirection

17.6 The address of an object with
automatic storage shall not be
assigned to an object that may
persist after the object has
ceased to exist.

Pointer to a parameter is an
illegal return value. Pointer to a
local is an illegal return value.

Warning when assigning address
to a global variable, returning a
local variable address, or
returning a parameter address.

This rule maps to ISO/IEC TS
17961 ID accfree.

 MISRA C:2004 and MISRA AC AGC Coding Rules

7-29

Structures and Unions

N. MISRA Definition Messages in report file Polyspace Implementation
18.1 All structure or union types shall

be complete at the end of a
translation unit.

All structure or union types shall
be complete at the end of a
translation unit.

Warning for all incomplete
declarations of structs or unions.

18.2 An object shall not be assigned to
an overlapping object.

• An object shall not be
assigned to an overlapping
object.

• Destination and source of XX
overlap, the behavior is
undefined.

18.4 Unions shall not be used Unions shall not be used.

Preprocessing Directives

N. MISRA Definition Messages in report file Polyspace Implementation
19.1 #include statements in a file shall

only be preceded by other
preprocessors directives or
comments

#include statements in a file shall
only be preceded by other
preprocessors directives or
comments

A message is displayed when a
#include directive is preceded by
other things than preprocessor
directives, comments, spaces or
“new lines”.

19.2 Nonstandard characters should
not occur in header file names in
#include directives

• A message is displayed on
characters ', " or /* between <
and > in #include <filename>

• A message is displayed on
characters ', or /* between "
and " in #include "filename"

19.3 The #include directive shall be
followed by either a <filename>
or "filename" sequence.

• '#include' expects
"FILENAME" or
<FILENAME>

• '#include_next' expects
"FILENAME" or
<FILENAME>

7 Coding Rule Sets and Concepts

7-30

N. MISRA Definition Messages in report file Polyspace Implementation
19.4 C macros shall only expand to a

braced initializer, a constant, a
parenthesized expression, a type
qualifier, a storage class specifier,
or a do-while-zero construct.

Macro '<name>' does not expand
to a compliant construct.

We assume that a macro
definition does not violate this
rule when it expands to:

• a braced construct (not
necessarily an initializer)

• a parenthesized construct (not
necessarily an expression)

• a number
• a character constant
• a string constant (can be the

result of the concatenation of
string field arguments and
literal strings)

• the following keywords:
typedef, extern, static, auto,
register, const, volatile,
__asm__ and __inline__

• a do-while-zero construct
19.5 Macros shall not be #defined and

#undefd within a block.
• Macros shall not be

#define’d within a block.
• Macros shall not be #undef’d

within a block.

19.6 #undef shall not be used. #undef shall not be used.
19.7 A function should be used in

preference to a function like-
macro.

A function should be used in
preference to a function like-
macro

Message on all function-like
macro definitions.

19.8 A function-like macro shall not be
invoked without all of its
arguments

• arguments given to macro
'<name>'

• macro '<name>' used without
args.

• macro '<name>' used with
just one arg.

• macro '<name>' used with
too many (<number>) args.

19.9 Arguments to a function-like
macro shall not contain tokens
that look like preprocessing
directives.

Macro argument shall not look
like a preprocessing directive.

This rule is detected as violated
when the '#' character appears in
a macro argument (outside a
string or character constant)

 MISRA C:2004 and MISRA AC AGC Coding Rules

7-31

N. MISRA Definition Messages in report file Polyspace Implementation
19.10 In the definition of a function-like

macro each instance of a
parameter shall be enclosed in
parentheses unless it is used as
the operand of # or ##.

Parameter instance shall be
enclosed in parentheses.

If x is a macro parameter, the
following instances of x as an
operand of the # and ##
operators do not generate a
warning: #x, ##x, and x##.
Otherwise, parentheses are
required around x.

The software does not generate a
warning if a parameter is reused
as an argument of a function or
function-like macro. For example,
consider a parameter x. The
software does not generate a
warning if x appears as (x) or
(x, or ,x) or ,x,.

19.11 All macro identifiers in
preprocessor directives shall be
defined before use, except in
#ifdef and #ifndef preprocessor
directives and the defined()
operator.

'<name>' is not defined.

19.12 There shall be at most one
occurrence of the # or ##
preprocessor operators in a
single macro definition.

More than one occurrence of the
or ## preprocessor operators.

19.13 The # and ## preprocessor
operators should not be used

Message on definitions of macros
using # or ## operators

19.14 The defined preprocessor
operator shall only be used in one
of the two standard forms.

'defined' without an identifier.

7 Coding Rule Sets and Concepts

7-32

N. MISRA Definition Messages in report file Polyspace Implementation
19.15 Precautions shall be taken in

order to prevent the contents of a
header file being included twice.

Precautions shall be taken in
order to prevent multiple
inclusions.

When a header file is formatted
as,

#ifndef <control macro>
#define <control macro>
<contents> #endif

or,

#ifndef <control macro>
#error ...
#else
#define <control macro>
<contents> #endif

it is assumed that precautions
have been taken to prevent
multiple inclusions. Otherwise, a
violation of this MISRA rule is
detected.

19.16 Preprocessing directives shall be
syntactically meaningful even
when excluded by the
preprocessor.

directive is not syntactically
meaningful.

19.17 All #else, #elif and #endif
preprocessor directives shall
reside in the same file as the #if
or #ifdef directive to which they
are related.

• '#elif' not within a
conditional.

• '#else' not within a
conditional.

• '#elif' not within a
conditional.

• '#endif' not within a
conditional.

• unbalanced '#endif'.
• unterminated '#if' conditional.
• unterminated '#ifdef'

conditional.
• unterminated '#ifndef'

conditional.

Standard Libraries

N. MISRA Definition Messages in report file Polyspace Implementation
20.1 Reserved identifiers, macros and

functions in the standard library,
shall not be defined, redefined or
undefined.

• The macro '<name> shall not
be redefined.

• The macro '<name> shall not
be undefined.

 MISRA C:2004 and MISRA AC AGC Coding Rules

7-33

N. MISRA Definition Messages in report file Polyspace Implementation
20.2 The names of standard library

macros, objects and functions
shall not be reused.

Identifier XX should not be used. In case a macro whose name
corresponds to a standard library
macro, object or function is
defined, the rule that is detected
as violated is 20.1.

Tentative definitions are
considered as definitions. For
objects with file scope, tentative
definitions are declarations that:

• Do not have initializers.
• Do not have storage class
specifiers, or have the static
specifier

20.3 The validity of values passed to
library functions shall be
checked.

Validity of values passed to
library functions shall be checked

Warning for argument in library
function call if the following are
all true:

• Argument is a local variable
• Local variable is not tested

between last assignment and
call to the library function

• Library function is a common
mathematical function

• Corresponding parameter of
the library function has a
restricted input domain.

The library function can be one of
the following : sqrt, tan, pow,
log, log10, fmod, acos, asin,
acosh, atanh, or atan2.

Bug Finder and Code Prover
check this rule differently. The
analysis can produce different
results.

20.4 Dynamic heap memory allocation
shall not be used.

• The macro '<name> shall not
be used.

• Identifier XX should not be
used.

In case the dynamic heap
memory allocation functions are
actually macros and the macro is
expanded in the code, this rule is
detected as violated. Assumes
rule 20.2 is not violated.

20.5 The error indicator errno shall
not be used

The error indicator errno shall
not be used

Assumes that rule 20.2 is not
violated

7 Coding Rule Sets and Concepts

7-34

N. MISRA Definition Messages in report file Polyspace Implementation
20.6 The macro offsetof, in library

<stddef.h>, shall not be used.
• The macro '<name> shall not

be used.
• Identifier XX should not be

used.

Assumes that rule 20.2 is not
violated

20.7 The setjmp macro and the
longjmp function shall not be
used.

• The macro '<name> shall not
be used.

• Identifier XX should not be
used.

In case the longjmp function is
actually a macro and the macro is
expanded in the code, this rule is
detected as violated. Assumes
that rule 20.2 is not violated

20.8 The signal handling facilities of
<signal.h> shall not be used.

• The macro '<name> shall not
be used.

• Identifier XX should not be
used.

In case some of the signal
functions are actually macros and
are expanded in the code, this
rule is detected as violated.
Assumes that rule 20.2 is not
violated

20.9 The input/output library
<stdio.h> shall not be used in
production code.

• The macro '<name> shall not
be used.

• Identifier XX should not be
used.

In case the input/output library
functions are actually macros and
are expanded in the code, this
rule is detected as violated.
Assumes that rule 20.2 is not
violated

20.10 The library functions atof, atoi
and atoll from library <stdlib.h>
shall not be used.

• The macro '<name> shall not
be used.

• Identifier XX should not be
used.

In case the atof, atoi and atoll
functions are actually macros and
are expanded, this rule is
detected as violated. Assumes
that rule 20.2 is not violated

20.11 The library functions abort, exit,
getenv and system from library
<stdlib.h> shall not be used.

• The macro '<name> shall not
be used.

• Identifier XX should not be
used.

In case the abort, exit, getenv
and system functions are actually
macros and are expanded, this
rule is detected as violated.
Assumes that rule 20.2 is not
violated

20.12 The time handling functions of
library <time.h> shall not be
used.

• The macro '<name> shall not
be used.

• Identifier XX should not be
used.

In case the time handling
functions are actually macros and
are expanded, this rule is
detected as violated. Assumes
that rule 20.2 is not violated

 MISRA C:2004 and MISRA AC AGC Coding Rules

7-35

Runtime Failures

N. MISRA Definition Messages in report file Polyspace Implementation
21.1 Minimization of runtime failures

shall be ensured by the use of at
least one of:

• static verification tools/
techniques;

• dynamic verification tools/
techniques;

• explicit coding of checks to
handle runtime faults.

 Done by Polyspace. Bug Finder
and Code Prover check this
coding rule differently. The
analyses can produce different
results.

In Code Prover, you can also see
a difference in results based on
your choice for the option
Verification level (-to).
See the documentation for
Polyspace Bug Finder or
Polyspace Bug Finder Server for
more on analysis options and how
to check for coding standard
violations...

Unsupported MISRA C:2004 and MISRA AC AGC Rules
The Polyspace coding rules checker does not check the following MISRA C:2004 coding rules. These
rules cannot be enforced because they are outside the scope of Polyspace software. They may
concern documentation, dynamic aspects, or functional aspects of MISRA rules. The Additional
Information column describes the reason each rule is not checked.

Environment

Rule Description Additional Information
1.2 (Required) No reliance shall be placed on undefined or

unspecified behavior
Not statically checkable unless the data
dynamic properties is taken into account

1.3 (Required) Multiple compilers and/or languages shall
only be used if there is a common defined
interface standard for object code to which
the language/compilers/assemblers conform.

It is a process rule method.

1.4 (Required) The compiler/linker/Identifiers (internal and
external) shall not rely on significance of
more than 31 characters. Furthermore the
compiler/linker shall be checked to ensure
that 31 character significance and case
sensitivity are supported for external
identifiers.

To observe this rule, check your compiler
documentation.

1.5 (Advisory) Floating point implementations should
comply with a defined floating point
standard.

To observe this rule, check your compiler
documentation.

7 Coding Rule Sets and Concepts

7-36

Documentation

Rule Description Additional Information
3.1 (Required) All usage of implementation-defined

behavior shall be documented.
To observe this rule, check your compiler
documentation. Error detection is based on
undefined behavior, according to choices
made for implementation- defined
constructions.

3.2 (Required) The character set and the corresponding
encoding shall be documented.

To observe this rule, check your compiler
documentation.

3.3 (Advisory) The implementation of integer division in the
chosen compiler should be determined,
documented and taken into account.

To observe this rule, check your compiler
documentation.

3.5 (Required) The implementation-defined behavior and
packing of bitfields shall be documented if
being relied upon.

To observe this rule, check your compiler
documentation.

3.6 (Required) All libraries used in production code shall be
written to comply with the provisions of this
document, and shall have been subject to
appropriate validation.

To observe this rule, check your compiler
documentation.

Structures and Unions

Rule Description Additional Information
18.3 (Required) An area of memory shall not be reused for

unrelated purposes.
"purpose" is functional design issue.

 MISRA C:2004 and MISRA AC AGC Coding Rules

7-37

Polyspace MISRA C:2012 Checkers
The Polyspace MISRA C:2012 checker helps you to comply with the MISRA C 2012 coding standard.2

When MISRA C:2012 guidelines are violated, the Polyspace MISRA C:2012 checker provides
messages with information about the violated rule or directive. Most violations are found during the
compile phase of an analysis.

Polyspace Bug Finder can check all the MISRA C:2012 rules and most MISRA C:2012 directives.
Polyspace Code Prover does not support checking of the following:

• MISRA C:2012 Dir 4.4, Dir 4.7, 4.13 and 4.14
• MISRA C:2012 Rule 21.13, 21.14, and 21.17 - 21.20
• MISRA C:2012 Rule 22.1 - 22.4 and 22.6 - 22.10

Each guideline is categorized into one of these three categories: mandatory, required, or advisory.
When you set up rule checking, you can select subsets of these categories to check. For automatically
generated code, some rules change categories, including to one additional category: readability. The
Use generated code requirements (-misra3-agc-mode) option activates the categorization
for automatically generated code. For more on analysis options, see the documentation for Polyspace
Bug Finder or Polyspace Bug Finder Server.

There are additional subsets of MISRA C:2012 guidelines defined by Polyspace called Software
Quality Objectives (SQO) that can have a direct or indirect impact on the precision of your results.
When you set up checking, you can select these subsets. These subsets are defined in “Software
Quality Objective Subsets (C:2012)” on page 1-50.

See Also

See Also

More About
• “MISRA C:2012 Directives and Rules”

2. MISRA and MISRA C are registered trademarks of MIRA Ltd., held on behalf of the MISRA Consortium.

7 Coding Rule Sets and Concepts

7-38

Essential Types in MISRA C:2012 Rules 10.x
MISRA C:2012 rules 10.x classify data types in categories. The rules treat data types in the same
category as essentially similar.

For instance, the data types float, double and long double are considered as essentially floating.
Rule 10.1 states that the % operation must not have essentially floating operands. This statement
implies that the operands cannot have one of these three data types: float, double and long
double.

Categories of Essential Types
The essential types fall in these categories:

Essential type category Standard types
Essentially Boolean bool or _Bool (defined in stdbool.h)

If you define a boolean type through a typedef, you must specify
this type name before coding rules checking. For more information,
see Effective boolean types (-boolean-types). For more
on analysis options, see the documentation for Polyspace Bug
Finder or Polyspace Bug Finder Server .

Essentially character char
Essentially enum named enum
Essentially signed signed char, signed short, signed int, signed long, signed long

long
Essentially unsigned unsigned char, unsigned short, unsigned int, unsigned long,

unsigned long long
Essentially floating float, double, long double

How MISRA C:2012 Uses Essential Types
These rules use essential types in their statements:

• MISRA C:2012 Rule 10.1: Operands shall not be of an inappropriate essential type.

For instance, the right operand of the << or >> operator must be essentially unsigned. Otherwise,
negative values can cause undefined behavior.

• MISRA C:2012 Rule 10.2: Expressions of essentially character type shall not be used
inappropriately in addition and subtraction operations.

For instance, the type char does not represent numeric values. Do not use a variable of this type
in addition and subtraction operations.

• MISRA C:2012 Rule 10.3: The value of an expression shall not be assigned to an object with a
narrower essential type or of a different essential type category.

For instance, do not assign a variable of data type double to a variable with the narrower data
type float.

 Essential Types in MISRA C:2012 Rules 10.x

7-39

• MISRA C:2012 Rule 10.4: Both operands of an operator in which the usual arithmetic
conversions are performed shall have the same essential type category.

For instance, do not perform an addition operation with a signed int operand, which belongs to
the essentially signed category, and an unsigned int operand, which belongs to the essentially
unsigned category.

• MISRA C:2012 Rule 10.5: The value of an expression should not be cast to an inappropriate
essential type.

For instance, do not perform a cast between essentially floating types and essentially character
types.

• MISRA C:2012 Rule 10.6: The value of a composite expression shall not be assigned to an
object with wider essential type.

For instance, if a multiplication, binary addition or bitwise operation involves unsigned char
operands, do not assign the result to a variable having the wider type unsigned int.

• MISRA C:2012 Rule 10.7: If a composite expression is used as one operand of an operator in
which the usual arithmetic conversions are performed then the other operand shall not have wider
essential type.

For instance, if one operand of an addition operation is a composite expression with two unsigned
char operands, the other operand must not have the wider type unsigned int.

See Also

More About
• “MISRA C:2012 Directives and Rules”

7 Coding Rule Sets and Concepts

7-40

Unsupported MISRA C:2012 Guidelines
The Polyspace coding rules checker does not check the following MISRA C:2012 directives. These
directives are not checked either in Bug Finder or Code Prover. These directives cannot be enforced
because they are outside the scope of Polyspace software. These guidelines concern documentation,
dynamic aspects, or functional aspects of MISRA rules.

For the list of supported rules and directives, see “MISRA C:2012 Directives and Rules”.

Number Category AGC
Category

Definition

Directive
3.1

Required Required All code shall be traceable to documented requirements

Directive
4.2

Advisory Advisory All usage of assembly language should be documented

See Also

More About
• “MISRA C:2012 Directives and Rules”

 Unsupported MISRA C:2012 Guidelines

7-41

Polyspace MISRA C++ Checkers
The Polyspace MISRA C++ checker helps you comply with the MISRA C++:2008 coding standard.3

When MISRA C++ rules are violated, the Polyspace software provides messages with information
about why the code violates the rule. Most violations are found during the compile phase of an
analysis. The MISRA C++ checker can check 202 of the 230 MISRA C++ coding rules.

There are subsets of MISRA C++ coding rules that can have a direct or indirect impact on the
selectivity (reliability percentage) of your results. When you set up rule checking, you can select
these subsets directly. These subsets are defined in “Software Quality Objective Subsets (C++)” on
page 1-56.

Note The Polyspace MISRA C++ checker is based on MISRA C++:2008 – “Guidelines for the use of
the C++ language in critical systems."

See Also

More About
• “MISRA C++:2008 Rules”

3. MISRA is a registered trademark of MIRA Ltd., held on behalf of the MISRA Consortium.

7 Coding Rule Sets and Concepts

7-42

Unsupported MISRA C++ Coding Rules

In this section...
“Language Independent Issues” on page 7-43
“General” on page 7-44
“Lexical Conventions” on page 7-44
“Expressions” on page 7-44
“Declarations” on page 7-44
“Classes” on page 7-45
“Templates” on page 7-45
“Exception Handling” on page 7-45
“Library Introduction” on page 7-45

Polyspace does not check the following MISRAC++ coding rules. These rules are not checked either
in Bug Finder or Code Prover. Some of these rules cannot be enforced because they are outside the
scope of Polyspace software. The rules concern documentation, dynamic aspects, or functional
aspects of MISRA rules.

For the list of supported rules, see “MISRA C++:2008 Rules”.

Language Independent Issues
N. Category MISRA Definition Additional Information
0-1-4 Required A project shall not contain non-volatile

POD variables having only one use.

0-1-6 Required A project shall not contain instances of
non-volatile variables being given values
that are never subsequently used.

0-1-8 Required All functions with void return type shall
have external side effects.

0-3-1 Required Minimization of run-time failures shall be
ensured by the use of at least one of: (a)
static analysis tools/techniques; (b)
dynamic analysis tools/techniques; (c)
explicit coding of checks to handle run-
time faults.

0-3-2 Required If a function generates error information,
then that error information shall be
tested.

0-4-1 Document Use of scaled-integer or fixed-point
arithmetic shall be documented.

To observe this rule, check your
compiler documentation.

0-4-2 Document Use of floating-point arithmetic shall be
documented.

To observe this rule, check your
compiler documentation.

 Unsupported MISRA C++ Coding Rules

7-43

N. Category MISRA Definition Additional Information
0-4-3 Document Floating-point implementations shall

comply with a defined floating-point
standard.

To observe this rule, check your
compiler documentation.

General
N. Category MISRA Definition Additional Information
1-0-2 Document Multiple compilers shall only be used if

they have a common, defined interface.
To observe this rule, check your
compiler documentation.

1-0-3 Document The implementation of integer division in
the chosen compiler shall be determined
and documented.

To observe this rule, check your
compiler documentation.

Lexical Conventions
N. Category MISRA Definition Additional Information
2-2-1 Document The character set and the corresponding

encoding shall be documented.
To observe this rule, check your
compiler documentation.

Expressions
N. Category MISRA Definition Additional Information
5-0-16 Required A pointer operand and any pointer

resulting from pointer arithmetic using
that operand shall both address elements
of the same array.

5-17-1 Required The semantic equivalence between a
binary operator and its assignment
operator form shall be preserved.

Declarations
N. MISRA Definition Additional Information
7-2-1 Required An expression with enum underlying type

shall only have values corresponding to
the enumerators of the enumeration.

7-4-1 Document All usage of assembler shall be
documented.

To observe this rule, check your
compiler documentation.

7 Coding Rule Sets and Concepts

7-44

Classes
N. Category MISRA Definition Additional Information
9-6-1 Document When the absolute positioning of bits

representing a bit-field is required, then
the behavior and packing of bit-fields
shall be documented.

To observe this rule, check your
compiler documentation.

Templates
N. MISRA Definition Additional Information
14-5-1 Required A non-member generic function shall only

be declared in a namespace that is not an
associated namespace.

14-7-1 Required All class templates, function templates,
class template member functions and
class template static members shall be
instantiated at least once.

14-7-2 Required For any given template specialization, an
explicit instantiation of the template with
the template-arguments used in the
specialization shall not render the
program ill-formed.

Exception Handling
N. Category MISRA Definition Additional Information
15-0-1 Document Exceptions shall only be used for error

handling.
To observe this rule, check your
compiler documentation.

15-1-1 Required The assignment-expression of a throw
statement shall not itself cause an
exception to be thrown.

15-3-1 Required Exceptions shall be raised only after
start-up and before termination of the
program.

15-3-4 Required Each exception explicitly thrown in the
code shall have a handler of a compatible
type in all call paths that could lead to
that point.

Library Introduction
N. Category MISRA Definition Additional Information
17-0-3 Required The names of standard library functions

shall not be overridden.

 Unsupported MISRA C++ Coding Rules

7-45

N. Category MISRA Definition Additional Information
17-0-4 Required All library code shall conform to MISRA

C++.
To observe this rule, check your
compiler documentation.

See Also

More About
• “MISRA C++:2008 Rules”

7 Coding Rule Sets and Concepts

7-46

Polyspace JSF AV C++ Checkers
The Polyspace JSF C++ checker helps you comply with the Joint Strike Fighter® Air Vehicle C++
coding standards (JSF++). These coding standards were developed by Lockheed Martin® for the Joint
Strike Fighter program. They are designed to improve the robustness of C++ code, and improve
maintainability.

4

When JSF++ rules are violated, the Polyspace JSF C++ checker enables Polyspace software to
provide messages with information about the rule violations. Most messages are reported during the
compile phase of an analysis.

Note The Polyspace JSF C++ checker is based on JSF++:2005.

See Also

4. JSF and Joint Strike Fighter are Lockheed Martin.

 Polyspace JSF AV C++ Checkers

7-47

JSF AV C++ Coding Rules

Supported JSF C++ Coding Rules
Code Size and Complexity

N. JSF++ Definition Polyspace Implementation
1 Any one function (or method) will contain no more

than 200 logical source lines of code (L-SLOCs).
Message in report file:

<function name> has <num> logical source lines
of code.

3 All functions shall have a cyclomatic complexity
number of 20 or less.

Message in report file:

<function name> has cyclomatic complexity
number equal to <num>.

Environment

N. JSF++ Definition Polyspace Implementation
8 All code shall conform to ISO/IEC 14882:2002(E)

standard C++.
Reports the compilation error message

9 Only those characters specified in the C++ basic
source character set will be used.

11 Trigraphs will not be used.
12 The following digraphs will not be used: <%, %>,

<:, :>, %:, %:%:.
Message in report file:

The following digraph will not be used:
<digraph>.

Reports the digraph. If the rule level is set to
warning, the digraph will be allowed even if it is
not supported in -compiler iso.

13 Multi-byte characters and wide string literals will
not be used.

Report L'c', L"string", and use of wchar_t.

14 Literal suffixes shall use uppercase rather than
lowercase letters.

15 Provision shall be made for run-time checking
(defensive programming).

Done with checks in the software.

Libraries

N. JSF++ Definition Polyspace Implementation
17 The error indicator errno shall not be used. errno should not be used as a macro or a global

with external "C" linkage.
18 The macro offsetof, in library <stddef.h>,

shall not be used.
offsetof should not be used as a macro or a
global with external "C" linkage.

7 Coding Rule Sets and Concepts

7-48

N. JSF++ Definition Polyspace Implementation
19 <locale.h> and the setlocale function shall

not be used.
setlocale and localeconv should not be used
as a macro or a global with external "C" linkage.

20 The setjmp macro and the longjmp function
shall not be used.

setjmp and longjmp should not be used as a
macro or a global with external "C" linkage.

21 The signal handling facilities of <signal.h>
shall not be used.

signal and raise should not be used as a macro
or a global with external "C" linkage.

22 The input/output library <stdio.h> shall not be
used.

all standard functions of <stdio.h> should not
be used as a macro or a global with external "C"
linkage.

23 The library functions atof, atoi and atol from
library <stdlib.h> shall not be used.

atof, atoi and atol should not be used as a
macro or a global with external "C" linkage.

24 The library functions abort, exit, getenv and
system from library <stdlib.h> shall not be
used.

abort, exit, getenv and system should not be
used as a macro or a global with external "C"
linkage.

25 The time handling functions of library <time.h>
shall not be used.

clock, difftime, mktime, asctime, ctime,
gmtime, localtime and strftime should not be
used as a macro or a global with external "C"
linkage.

Pre-Processing Directives

N. JSF++ Definition Polyspace Implementation
26 Only the following preprocessor directives shall

be used: #ifndef, #define, #endif,
#include.

27 #ifndef, #define and #endif will be used to
prevent multiple inclusions of the same header
file. Other techniques to prevent the multiple
inclusions of header files will not be used.

Detects the patterns #if !defined, #pragma
once, #ifdef, and missing #define.

28 The #ifndef and #endif preprocessor directives
will only be used as defined in AV Rule 27 to
prevent multiple inclusions of the same header
file.

Detects any use that does not comply with AV Rule
27. Assuming 35/27 is not violated, reports only
#ifndef.

29 The #define preprocessor directive shall not be
used to create inline macros. Inline functions shall
be used instead.

Rule is split into two parts: the definition of a
macro function (29.def) and the call of a
macrofunction (29.use).

Messages in report file:

• 29.1 : The #define preprocessor directive
shall not be used to create inline macros.

• 29.2 : Inline functions shall be used instead of
inline macros.

 JSF AV C++ Coding Rules

7-49

N. JSF++ Definition Polyspace Implementation
30 The #define preprocessor directive shall not be

used to define constant values. Instead, the const
qualifier shall be applied to variable declarations
to specify constant values.

Reports #define of simple constants.

31 The #define preprocessor directive will only be
used as part of the technique to prevent multiple
inclusions of the same header file.

Detects use of #define that are not used to guard
for multiple inclusion, assuming that rules 35 and
27 are not violated.

32 The #include preprocessor directive will only be
used to include header (*.h) files.

Header Files

N. JSF++ Definition Polyspace Implementation
33 The #include directive shall use the

<filename.h> notation to include header files.

35 A header file will contain a mechanism that
prevents multiple inclusions of itself.

39 Header files (*.h) will not contain non-const
variable definitions or function definitions.

Reports definitions of global variables / function in
header.

Style

N. JSF++ Definition Polyspace Implementation
40 Every implementation file shall include the header

files that uniquely define the inline functions,
types, and templates used.

Reports when type, template, or inline function is
defined in source file.

Bug Finder and Code Prover check this coding
rule differently. The analyses can produce
different results.

41 Source lines will be kept to a length of 120
characters or less.

42 Each expression-statement will be on a separate
line.

Reports when two consecutive expression
statements are on the same line (unless the
statements are part of a macro definition).

43 Tabs should be avoided.
44 All indentations will be at least two spaces and be

consistent within the same source file.
Reports when a statement indentation is not at
least two spaces more than the statement
containing it. Does not report bad indentation
between opening braces following if/else, do/
while, for, and while statements. NB: in final
release it will accept any indentation

46 User-specified identifiers (internal and external)
will not rely on significance of more than 64
characters.

This checker is deactivated in a default Polyspace
as You Code analysis. See “Checkers Deactivated
in Polyspace as You Code Default Analysis” on
page 5-80.

7 Coding Rule Sets and Concepts

7-50

N. JSF++ Definition Polyspace Implementation
47 Identifiers will not begin with the underscore

character '_'.

48 Identifiers will not differ by:

• Only a mixture of case
• The presence/absence of the underscore

character
• The interchange of the letter 'O'; with the

number '0' or the letter 'D'
• The interchange of the letter 'I'; with the

number '1' or the letter 'l'
• The interchange of the letter 'S' with the

number '5'
• The interchange of the letter 'Z' with the

number 2
• The interchange of the letter 'n' with the letter

'h'

Checked regardless of scope. Not checked
between macros and other identifiers.

Messages in report file:

• Identifier Idf1 (file1.cpp line l1
column c1) and Idf2 (file2.cpp line l2
column c2) only differ by the presence/
absence of the underscore character.

• Identifier Idf1 (file1.cpp line l1
column c1) and Idf2 (file2.cpp line l2
column c2) only differ by a mixture of case.

• Identifier Idf1 (file1.cpp line l1
column c1) and Idf2 (file2.cpp line l2
column c2) only differ by letter O, with the
number 0.

50 The first word of the name of a class, structure,
namespace, enumeration, or type created with
typedef will begin with an uppercase letter. All
others letters will be lowercase.

Messages in report file:

• The first word of the name of a class will begin
with an uppercase letter.

• The first word of the namespace of a class will
begin with an uppercase letter.

Bug Finder and Code Prover check this coding
rule differently. The analyses can produce
different results.

51 All letters contained in function and variables
names will be composed entirely of lowercase
letters.

Messages in report file:

• All letters contained in variable names will be
composed entirely of lowercase letters.

• All letters contained in function names will be
composed entirely of lowercase letters.

52 Identifiers for constant and enumerator values
shall be lowercase.

Messages in report file:

• Identifier for enumerator value shall be
lowercase.

• Identifier for template constant parameter
shall be lowercase.

53 Header files will always have file name extension
of ".h".

.H is allowed if you set the option -dos.

53.1 The following character sequences shall not
appear in header file names: ', \, /*, //, or ".

54 Implementation files will always have a file name
extension of ".cpp".

Not case sensitive if you set the option -dos.

 JSF AV C++ Coding Rules

7-51

N. JSF++ Definition Polyspace Implementation
57 The public, protected, and private sections of a

class will be declared in that order.

58 When declaring and defining functions with more
than two parameters, the leading parenthesis and
the first argument will be written on the same line
as the function name. Each additional argument
will be written on a separate line (with the closing
parenthesis directly after the last argument).

Detects that two parameters are not on the same
line, The first parameter should be on the same
line as function name. Does not check for the
closing parenthesis.

59 The statements forming the body of an if, else if,
else, while, do ... while or for statement shall
always be enclosed in braces, even if the braces
form an empty block.

Messages in report file:

• The statements forming the body of an if
statement shall always be enclosed in braces.

• The statements forming the body of an else
statement shall always be enclosed in braces.

• The statements forming the body of a while
statement shall always be enclosed in braces.

• The statements forming the body of a do ...
while statement shall always be enclosed in
braces.

• The statements forming the body of a for
statement shall always be enclosed in braces.

60 Braces ("{}") which enclose a block will be placed
in the same column, on separate lines directly
before and after the block.

Detects that statement-block braces should be in
the same columns.

61 Braces ("{}") which enclose a block will have
nothing else on the line except comments.

62 The dereference operator ‘*’ and the address-of
operator ‘&’ will be directly connected with the
type-specifier.

Reports when there is a space between type and
"*" "&" for variables, parameters and fields
declaration.

63 Spaces will not be used around ‘.’ or ‘->’, nor
between unary operators and operands.

Reports when the following characters are not
directly connected to a white space:

• .
• ->
• !
• ~
• -
• ++
• —

Note that a violation will be reported for “.” used
in float/double definition.

7 Coding Rule Sets and Concepts

7-52

Classes

N. JSF++ Definition Polyspace Implementation
67 Public and protected data should only be used in

structs - not classes.

68 Unneeded implicitly generated member functions
shall be explicitly disallowed.

Reports when default constructor, assignment
operator, copy constructor or destructor is not
declared.

71.1 A class’s virtual functions shall not be invoked
from its destructor or any of its constructors.

Reports when a constructor or destructor directly
calls a virtual function.

74 Initialization of nonstatic class members will be
performed through the member initialization list
rather than through assignment in the body of a
constructor.

All data should be initialized in the initialization
list except for array. Does not report that an
assignment exists in ctor body.

Message in report file:

Initialization of nonstatic class members
"<field>" will be performed through the member
initialization list.

75 Members of the initialization list shall be listed in
the order in which they are declared in the class.

76 A copy constructor and an assignment operator
shall be declared for classes that contain pointers
to data items or nontrivial destructors.

Messages in report file:

• no copy constructor and no copy
assign

• no copy constructor
• no copy assign

Bug Finder and Code Prover check this coding
rule differently. The analyses can produce
different results.

77.1 The definition of a member function shall not
contain default arguments that produce a
signature identical to that of the implicitly-
declared copy constructor for the corresponding
class/structure.

Does not report when an explicit copy constructor
exists.

78 All base classes with a virtual function shall
define a virtual destructor.

79 All resources acquired by a class shall be released
by the class’s destructor.

Reports when the number of “new” called in a
constructor is greater than the number of “delete”
called in its destructor.

Note A violation is raised even if “new” is done in
a “if/else”.

 JSF AV C++ Coding Rules

7-53

N. JSF++ Definition Polyspace Implementation
81 The assignment operator shall handle self-

assignment correctly
Reports when copy assignment body does not
begin with “if (this != arg)”

A violation is not raised if an empty else
statement follows the if, or the body contains
only a return statement.

A violation is raised when the if statement is
followed by a statement other than the return
statement.

82 An assignment operator shall return a reference
to *this.

The following operators should return *this on
method, and *first_arg on plain function:

• operator=
• operator+=
• operator-=
• operator*=
• operator >>=
• operator <<=
• operator /=
• operator %=
• operator |=
• operator &=
• operator ^=
• Prefix operator++
• Prefix operator--

Does not report when no return exists.

No special message if type does not match.

Messages in report file:

• An assignment operator shall return a
reference to *this.

• An assignment operator shall return a
reference to its first arg.

83 An assignment operator shall assign all data
members and bases that affect the class invariant
(a data element representing a cache, for
example, would not need to be copied).

Reports when a copy assignment does not assign
all data members. In a derived class, it also
reports when a copy assignment does not call
inherited copy assignments.

7 Coding Rule Sets and Concepts

7-54

N. JSF++ Definition Polyspace Implementation
88 Multiple inheritance shall only be allowed in the

following restricted form: n interfaces plus m
private implementations, plus at most one
protected implementation.

Messages in report file:

• Multiple inheritance on public implementation
shall not be allowed: <public_base_class>
is not an interface.

• Multiple inheritance on protected
implementation shall not be allowed :
<protected_base_class_1>.

• <protected_base_class_2> are not
interfaces.

88.1 A stateful virtual base shall be explicitly declared
in each derived class that accesses it.

89 A base class shall not be both virtual and
nonvirtual in the same hierarchy.

94 An inherited nonvirtual function shall not be
redefined in a derived class.

Does not report for destructor.

Message in report file:

Inherited nonvirtual function %s shall not be
redefined in a derived class.

95 An inherited default parameter shall never be
redefined.

96 Arrays shall not be treated polymorphically. Reports pointer arithmetic and array like access
on expressions whose pointed type is used as a
base class.

97 Arrays shall not be used in interface. Only to prevent array-to-pointer-decay. Not
checked on private methods

97.1 Neither operand of an equality operator (== or !=)
shall be a pointer to a virtual member function.

Reports == and != on pointer to member function
of polymorphic classes (cannot determine
statically if it is virtual or not), except when one
argument is the null constant.

Namespaces

N. JSF++ Definition Polyspace Implementation
98 Every nonlocal name, except main(), should be

placed in some namespace.
Bug Finder and Code Prover check this coding
rule differently. The analyses can produce
different results.

99 Namespaces will not be nested more than two
levels deep.

Templates

N. JSF++ Definition Polyspace Implementation
104 A template specialization shall be declared before

its use.
Reports the actual compilation error message.

 JSF AV C++ Coding Rules

7-55

Functions

N. JSF++ Definition Polyspace Implementation
107 Functions shall always be declared at file scope.
108 Functions with variable numbers of arguments

shall not be used.

109 A function definition should not be placed in a
class specification unless the function is intended
to be inlined.

Reports when "inline" is not in the definition of a
member function inside the class definition.

110 Functions with more than 7 arguments will not
be used.

111 A function shall not return a pointer or reference
to a non-static local object.

Simple cases without alias effect detected.

113 Functions will have a single exit point. Reports first return, or once per function.
114 All exit points of value-returning functions shall

be through return statements.

116 Small, concrete-type arguments (two or three
words in size) should be passed by value if
changes made to formal parameters should not be
reflected in the calling function.

Report constant parameters references with
sizeof <= 2 * sizeof(int). Does not report
for copy-constructor.

117 Arguments should be passed by reference if
NULL values are not possible:

• 117.1: An object should be passed as const
T& if the function should not change the value
of the object.

• 117.2: An object should be passed as T& if the
function may change the value of the object.

The checker flags a parameter passed by pointer if
the parameter is not compared against NULL or
nullptr in the function body. The absence of a
check for null indicates that the parameter cannot
be null and therefore can be passed by reference.

The checker does not raise a violation:

• If a parameter is passed using a smart pointer.

Only raw pointers are considered.
• If the pointer parameter is not dereferenced

within the function.
119 Functions shall not call themselves, either

directly or indirectly (i.e. recursion shall not be
allowed).

The checker reports each function that calls itself,
directly or indirectly. Even if several functions are
involved in one recursion cycle, each function is
individually reported.

You can calculate the total number of recursion
cycles using the code complexity metric Number
of Recursions. Note that unlike the checker,
the metric also considers implicit calls, for
instance, to compiler-generated constructors
during object creation.

121 Only functions with 1 or 2 statements should be
considered candidates for inline functions.

Reports inline functions with more than 2
statements.

7 Coding Rule Sets and Concepts

7-56

N. JSF++ Definition Polyspace Implementation
122 Trivial accessor and mutator functions should be

inlined.
The checker uses the following criteria to
determine if a method is trivial:

• An accessor method is trivial if it has no
parameters and contains one return
statement that returns a non-static data
member or a reference to a non-static data
member.

The return type of the method must exactly
match or be a reference to the type of the data
member.

• A mutator method is trivial if it has a void
return type, one parameter and contains one
assignment statement that assigns the
parameter to a non-static data member.

The parameter type must exactly match or be a
reference to the type of the data member.

The checker reports trivial accessor and mutator
methods defined outside their classes without the
inline keyword.

The checker does not flag template methods or
virtual methods.

Comments

N. JSF++ Definition Polyspace Implementation
126 Only valid C++ style comments (//) shall be

used.

 JSF AV C++ Coding Rules

7-57

N. JSF++ Definition Polyspace Implementation
127 Code that is not used (commented out) shall be

deleted.
The checker uses internal heuristics to detect
commented out code. For instance, characters
such as #, ;, { or } indicate comments that might
potentially contain code. These comments are
then evaluated against other metrics to determine
the likelihood of code masquerading as comment.
For instance, several successive words without a
symbol in between reduces this likelihood.

The checker does not flag the following comments
even if they contain code:

• Doxygen comments beginning with /**, /
*!, /// or //!.

• Comments that repeat the same symbol several
times, for instance, the symbol = here:

// ================================
// A comment
// ================================*/

• Comments on the first line of a file.
• Comments that mix the C style (/* */) and C

++ style (//).

The checker considers that these comments are
meant for documentation purposes or entered
deliberately with some forethought.

133 Every source file will be documented with an
introductory comment that provides information
on the file name, its contents, and any program-
required information (e.g. legal statements,
copyright information, etc).

Reports when a file does not begin with two
comment lines.

Note: This rule cannot be annotated in the source
code.

Declarations and Definitions

N. JSF++ Definition Polyspace Implementation
135 Identifiers in an inner scope shall not use the

same name as an identifier in an outer scope, and
therefore hide that identifier.

Bug Finder and Code Prover check this coding
rule differently. The analyses can produce
different results.

7 Coding Rule Sets and Concepts

7-58

N. JSF++ Definition Polyspace Implementation
136 Declarations should be at the smallest feasible

scope.
Reports when:

• A global variable is used in only one function.
• A local variable is not used in a statement

(expr, return, init …) of the same level of
its declaration (in the same block) or is not
used in two sub-statements of its declaration.

Note

• Non-used variables are reported.
• Initializations at definition are ignored (not

considered an access)

137 All declarations at file scope should be static
where possible.

Starting in R2021a, this checker is raised on
declarations of nonstatic objects that you use in
only one file. The checker is raised even if you
analyze a singe file. The checker is not raised on
the declarations of objects that remain unused,
such as:

• Noninstantiated templates
• Uncalled static or extern functions
• Uncalled and undefined local functions
• Unused types and variables

This checker is deactivated in a default Polyspace
as You Code analysis. See “Checkers Deactivated
in Polyspace as You Code Default Analysis” on
page 5-80.

138 Identifiers shall not simultaneously have both
internal and external linkage in the same
translation unit.

139 External objects will not be declared in more than
one file.

Reports all duplicate declarations inside a
translation unit. Reports when the declaration
localization is not the same in all translation
units.

This checker is deactivated in a default Polyspace
as You Code analysis. See “Checkers Deactivated
in Polyspace as You Code Default Analysis” on
page 5-80.

140 The register storage class specifier shall not be
used.

141 A class, structure, or enumeration will not be
declared in the definition of its type.

 JSF AV C++ Coding Rules

7-59

Initialization

N. JSF++ Definition Polyspace Implementation
142 All variables shall be initialized before use. Done with Non-initialized variable checks in the

software.
144 Braces shall be used to indicate and match the

structure in the non-zero initialization of arrays
and structures.

This covers partial initialization.

145 In an enumerator list, the '=' construct shall not
be used to explicitly initialize members other than
the first, unless all items are explicitly initialized.

Generates one report for an enumerator list.

Types

N. JSF++ Definition Polyspace Implementation
147 The underlying bit representations of floating

point numbers shall not be used in any way by
the programmer.

Reports on casts with float pointers (except with
void*).

148 Enumeration types shall be used instead of
integer types (and constants) to select from a
limited series of choices.

Reports when non enumeration types are used in
switches.

Constants

N. JSF++ Definition Polyspace Implementation
149 Octal constants (other than zero) shall not be

used.

150 Hexadecimal constants will be represented using
all uppercase letters.

151 Numeric values in code will not be used; symbolic
values will be used instead.

Reports direct numeric constants (except integer/
float value 1, 0) in expressions, non -const
initializations. and switch cases. char constants
are allowed. Does not report on templates non-
type parameter.

Bug Finder and Code Prover check this coding
rule differently. The analyses can produce
different results.

151.1 A string literal shall not be modified. The rule checker flags assignment of string
literals to:

• Pointers other than pointers to const objects.
• Arrays that are not const-qualified.

7 Coding Rule Sets and Concepts

7-60

Variables

N. JSF++ Definition Polyspace Implementation
152 Multiple variable declarations shall not be

allowed on the same line.
Reports when two consecutive declaration
statements are on the same line (unless the
statements are part of a macro definition).

Unions and Bit Fields

N. JSF++ Definition Polyspace Implementation
153 Unions shall not be used.
154 Bit-fields shall have explicitly unsigned integral or

enumeration types only.

156 All the members of a structure (or class) shall be
named and shall only be accessed via their names.

Reports unnamed bit-fields (unnamed fields are
not allowed).

Operators

N. JSF++ Definition Polyspace Implementation
157 The right hand operand of a && or || operator

shall not contain side effects.
Assumes rule 159 is not violated.

Messages in report file:

• The right hand operand of a && operator shall
not contain side effects.

• The right hand operand of a || operator shall
not contain side effects.

158 The operands of a logical && or || shall be
parenthesized if the operands contain binary
operators.

Messages in report file:

• The operands of a logical && shall be
parenthesized if the operands contain binary
operators.

• The operands of a logical || shall be
parenthesized if the operands contain binary
operators.

Exception for: X || Y || Z , Z&&Y &&Z
159 Operators ||, &&, and unary & shall not be

overloaded.
Messages in report file:

• Unary operator & shall not be overloaded.
• Operator || shall not be overloaded.
• Operator && shall not be overloaded.

160 An assignment expression shall be used only as
the expression in an expression statement.

Only simple assignment, not +=, ++, etc.

162 Signed and unsigned values shall not be mixed in
arithmetic or comparison operations.

163 Unsigned arithmetic shall not be used.

 JSF AV C++ Coding Rules

7-61

N. JSF++ Definition Polyspace Implementation
164 The right hand operand of a shift operator shall

lie between zero and one less than the width in
bits of the left-hand operand (inclusive).

164.1 The left-hand operand of a right-shift operator
shall not have a negative value.

Detects constant case +. Found by the software for
dynamic cases.

165 The unary minus operator shall not be applied to
an unsigned expression.

166 The sizeof operator will not be used on
expressions that contain side effects.

168 The comma operator shall not be used.

Pointers and References

N. JSF++ Definition Polyspace Implementation
169 Pointers to pointers should be avoided when

possible.
Reports second-level pointers, except for
arguments of main.

170 More than 2 levels of pointer indirection shall not
be used.

Only reports on variables/parameters.

171 Relational operators shall not be applied to
pointer types except where both operands are of
the same type and point to:

• the same object,
• the same function,
• members of the same object, or
• elements of the same array (including one past

the end of the same array).

Reports when relational operator are used on
pointer types (casts ignored).

173 The address of an object with automatic storage
shall not be assigned to an object which persists
after the object has ceased to exist.

174 The null pointer shall not be de-referenced. Done with checks in software.
175 A pointer shall not be compared to NULL or be

assigned NULL; use plain 0 instead.
Reports usage of NULL macro in pointer contexts.

176 A typedef will be used to simplify program
syntax when declaring function pointers.

Reports non-typedef function pointers, or
pointers to member functions for types of
variables, fields, parameters. Returns type of
function, cast, and exception specification.

7 Coding Rule Sets and Concepts

7-62

Type Conversions

N. JSF++ Definition Polyspace Implementation
177 User-defined conversion functions should be

avoided.
Reports user defined conversion function, non-
explicit constructor with one parameter or default
value for others (even undefined ones).

Does not report copy-constructor.

Additional message for constructor case:

This constructor should be flagged as "explicit".
178 Down casting (casting from base to derived class)

shall only be allowed through one of the following
mechanism:

• Virtual functions that act like dynamic casts
(most likely useful in relatively simple cases).

• Use of the visitor (or similar) pattern (most
likely useful in complicated cases).

Reports explicit down casting, dynamic_cast
included. (Visitor patter does not have a special
case.)

179 A pointer to a virtual base class shall not be
converted to a pointer to a derived class.

Reports this specific down cast. Allows
dynamic_cast.

180 Implicit conversions that may result in a loss of
information shall not be used.

Reports the following implicit casts :

integer => smaller integer unsigned =>
smaller or eq signed signed => smaller
or eq un-signed integer => float float
=> integer

Does not report for cast to bool reports for
implicit cast on constant done with the option -
scalar-overflows-checks signed-and-
unsigned

Bug Finder and Code Prover check this coding
rule differently. The analyses can produce
different results.

181 Redundant explicit casts will not be used. Reports useless cast: cast T to T. Casts to
equivalent typedefs are also reported.

182 Type casting from any type to or from pointers
shall not be used.

Does not report when Rule 181 applies.

184 Floating point numbers shall not be converted to
integers unless such a conversion is a specified
algorithmic requirement or is necessary for a
hardware interface.

Reports float->int conversions. Does not
report implicit ones.

185 C++ style casts (const_cast,
reinterpret_cast, and static_cast) shall be
used instead of the traditional C-style casts.

 JSF AV C++ Coding Rules

7-63

Flow Control Standards

N. JSF++ Definition Polyspace Implementation
186 There shall be no unreachable code. Done with gray checks in the software.

Bug Finder and Code Prover check this coding
rule differently. The analyses can produce
different results.

187 All non-null statements shall potentially have a
side-effect.

188 Labels will not be used, except in switch
statements.

189 The goto statement shall not be used.
190 The continue statement shall not be used.
191 The break statement shall not be used (except to

terminate the cases of a switch statement).

192 All if, else if constructs will contain either a
final else clause or a comment indicating why a
final else clause is not necessary.

else if should contain an else clause.

193 Every non-empty case clause in a switch
statement shall be terminated with a break
statement.

194 All switch statements that do not intend to test
for every enumeration value shall contain a final
default clause.

Reports only for missing default.

195 A switch expression will not represent a Boolean
value.

196 Every switch statement will have at least two
cases and a potential default.

197 Floating point variables shall not be used as loop
counters.

Assumes 1 loop parameter.

198 The initialization expression in a for loop will
perform no actions other than to initialize the
value of a single for loop parameter.

Reports if loop parameter cannot be determined.
Assumes Rule 200 is not violated. The loop
variable parameter is assumed to be a variable.

199 The increment expression in a for loop will
perform no action other than to change a single
loop parameter to the next value for the loop.

Assumes 1 loop parameter (Rule 198), with non
class type. Rule 200 must not be violated for this
rule to be reported.

200 Null initialize or increment expressions in for
loops will not be used; a while loop will be used
instead.

201 Numeric variables being used within a for loop for
iteration counting shall not be modified in the
body of the loop.

Assumes 1 loop parameter (AV rule 198), and no
alias writes.

7 Coding Rule Sets and Concepts

7-64

Expressions

N. JSF++ Definition Polyspace Implementation
202 Floating point variables shall not be tested for

exact equality or inequality.
Reports only direct equality/inequality. Check
done for all expressions.

203 Evaluation of expressions shall not lead to
overflow/underflow.

Done with overflow checks in the software.

204 A single operation with side-effects shall only be
used in the following contexts:

• by itself
• the right-hand side of an assignment
• a condition
• the only argument expression with a side-effect

in a function call
• condition of a loop
• switch condition
• single part of a chained operation

Reports when:

• A side effect is found in a return statement
• A side effect exists on a single value, and only

one operand of the function call has a side
effect.

204.1 The value of an expression shall be the same
under any order of evaluation that the standard
permits.

Reports when:

• Variable is written more than once in an
expression

• Variable is read and write in sub-expressions
• Volatile variable is accessed more than once

Note Read-write operations such as ++, are only
considered as a write.

205 The volatile keyword shall not be used unless
directly interfacing with hardware.

Reports if volatile keyword is used.

Memory Allocation

N. JSF++ Definition Polyspace Implementation
206 Allocation/deallocation from/to the free store

(heap) shall not occur after initialization.
Reports calls to C library functions: malloc /
calloc / realloc / free and all new/delete
operators in functions or methods.

Fault Handling

N. JSF++ Definition Polyspace Implementation
208 C++ exceptions shall not be used. Reports try, catch, throw spec, and throw.

 JSF AV C++ Coding Rules

7-65

Portable Code

N. JSF++ Definition Polyspace Implementation
209 The basic types of int, short, long, float and

double shall not be used, but specific-length
equivalents should be typedef'd accordingly for
each compiler, and these type names used in the
code.

Only allows use of basic types through direct
typedefs.

213 No dependence shall be placed on C++’s operator
precedence rules, below arithmetic operators, in
expressions.

Reports when a binary operation has one operand
that is not parenthesized and is an operation with
inferior precedence level.

Reports bitwise and shifts operators that are used
without parenthesis and binary operation
arguments.

215 Pointer arithmetic will not be used. Reports:p + Ip - Ip++p--p+=p-=

Allows p[i].

Unsupported JSF++ Rules
• “Code Size and Complexity” on page 7-67
• “Rules” on page 7-67
• “Environment” on page 7-67
• “Libraries” on page 7-67
• “Header Files” on page 7-67
• “Style” on page 7-68
• “Classes” on page 7-68
• “Namespaces” on page 7-69
• “Templates” on page 7-69
• “Functions” on page 7-69
• “Comments” on page 7-70
• “Initialization” on page 7-70
• “Types” on page 7-70
• “Unions and Bit Fields” on page 7-70
• “Operators” on page 7-70
• “Type Conversions” on page 7-71
• “Expressions” on page 7-71
• “Memory Allocation” on page 7-71
• “Portable Code” on page 7-71
• “Efficiency Considerations” on page 7-71
• “Miscellaneous” on page 7-71
• “Testing” on page 7-72

7 Coding Rule Sets and Concepts

7-66

Code Size and Complexity

N. JSF++ Definition
2 There shall not be any self-modifying code.

Rules

N. JSF++ Definition
4 To break a “should” rule, the following approval must be received by the developer:

• approval from the software engineering lead (obtained by the unit approval in the developmental
CM tool)

5 To break a “will” or a “shall” rule, the following approvals must be received by the developer:

• approval from the software engineering lead (obtained by the unit approval in the developmental
CM tool)

• approval from the software product manager (obtained by the unit approval in the developmental
CM tool)

6 Each deviation from a “shall” rule shall be documented in the file that contains the deviation.
Deviations from this rule shall not be allowed, AV Rule 5 notwithstanding.

7 Approval will not be required for a deviation from a “shall” or “will” rule that complies with an
exception specified by that rule.

Environment

N. JSF++ Definition
10 Values of character types will be restricted to a defined and documented subset of ISO 10646 1.

Libraries

N. JSF++ Definition
16 Only DO-178B level A [15] certifiable or SEAL 1 C/C++ libraries shall be used with safety-critical (i.e.

SEAL 1) code.

Header Files

N. JSF++ Definition
34 Header files should contain logically related declarations only.
36 Compilation dependencies should be minimized when possible.
37 Header (include) files should include only those header files that are required for them to successfully

compile. Files that are only used by the associated .cpp file should be placed in the .cpp file — not
the .h file.

38 Declarations of classes that are only accessed via pointers (*) or references (&) should be supplied by
forward headers that contain only forward declarations.

 JSF AV C++ Coding Rules

7-67

Style

N. JSF++ Definition
45 All words in an identifier will be separated by the ‘_’ character.
49 All acronyms in an identifier will be composed of uppercase letters.
55 The name of a header file should reflect the logical entity for which it provides declarations.
56 The name of an implementation file should reflect the logical entity for which it provides definitions

and have a “.cpp” extension (this name will normally be identical to the header file that provides the
corresponding declarations.)

At times, more than one .cpp file for a given logical entity will be required. In these cases, a suffix
should be appended to reflect a logical differentiation.

Classes

N. JSF++ Definition
64 A class interface should be complete and minimal.
65 A structure should be used to model an entity that does not require an invariant.
66 A class should be used to model an entity that maintains an invariant.
69 A member function that does not affect the state of an object (its instance variables) will be declared

const. Member functions should be const by default. Only when there is a clear, explicit reason should
the const modifier on member functions be omitted.

70 A class will have friends only when a function or object requires access to the private elements of the
class, but is unable to be a member of the class for logical or efficiency reasons.

70.1 An object shall not be improperly used before its lifetime begins or after its lifetime ends.
71 Calls to an externally visible operation of an object, other than its constructors, shall not be allowed

until the object has been fully initialized.
72 The invariant for a class should be:

• A part of the postcondition of every class constructor,
• A part of the precondition of the class destructor (if any),
• A part of the precondition and postcondition of every other publicly accessible operation.

73 Unnecessary default constructors shall not be defined.
77 A copy constructor shall copy all data members and bases that affect the class invariant (a data

element representing a cache, for example, would not need to be copied).
80 The default copy and assignment operators will be used for classes when those operators offer

reasonable semantics.
84 Operator overloading will be used sparingly and in a conventional manner.
85 When two operators are opposites (such as == and !=), both will be defined and one will be defined in

terms of the other.
86 Concrete types should be used to represent simple independent concepts.
87 Hierarchies should be based on abstract classes.
90 Heavily used interfaces should be minimal, general and abstract.

7 Coding Rule Sets and Concepts

7-68

N. JSF++ Definition
91 Public inheritance will be used to implement “is-a” relationships.
92 A subtype (publicly derived classes) will conform to the following guidelines with respect to all classes

involved in the polymorphic assignment of different subclass instances to the same variable or
parameter during the execution of the system:

• Preconditions of derived methods must be at least as weak as the preconditions of the methods
they override.

• Postconditions of derived methods must be at least as strong as the postconditions of the methods
they override.

In other words, subclass methods must expect less and deliver more than the base class methods they
override. This rule implies that subtypes will conform to the Liskov Substitution Principle.

93 “has-a” or “is-implemented-in-terms-of” relationships will be modeled through membership or non-
public inheritance.

Namespaces

N. JSF++ Definition
100 Elements from a namespace should be selected as follows:

• using declaration or explicit qualification for few (approximately five) names,
• using directive for many names.

Templates

N. JSF++ Definition
101 Templates shall be reviewed as follows:

1 with respect to the template in isolation considering assumptions or requirements placed on its
arguments.

2 with respect to all functions instantiated by actual arguments.
102 Template tests shall be created to cover all actual template instantiations.
103 Constraint checks should be applied to template arguments.
105 A template definition’s dependence on its instantiation contexts should be minimized.
106 Specializations for pointer types should be made where appropriate.

Functions

N. JSF++ Definition
112 Function return values should not obscure resource ownership.
115 If a function returns error information, then that error information will be tested.
118 Arguments should be passed via pointers if NULL values are possible:

• 118.1 – An object should be passed as const T* if its value should not be modified.
• 118.2 – An object should be passed as T* if its value may be modified.

 JSF AV C++ Coding Rules

7-69

N. JSF++ Definition
120 Overloaded operations or methods should form families that use the same semantics, share the same

name, have the same purpose, and that are differentiated by formal parameters.
123 The number of accessor and mutator functions should be minimized.
124 Trivial forwarding functions should be inlined.
125 Unnecessary temporary objects should be avoided.

Comments

N. JSF++ Definition
128 Comments that document actions or sources (e.g. tables, figures, paragraphs, etc.) outside of the file

being documented will not be allowed.
129 Comments in header files should describe the externally visible behavior of the functions or classes

being documented.
130 The purpose of every line of executable code should be explained by a comment, although one

comment may describe more than one line of code.
131 One should avoid stating in comments what is better stated in code (i.e. do not simply repeat what is

in the code).
132 Each variable declaration, typedef, enumeration value, and structure member will be commented.
134 Assumptions (limitations) made by functions should be documented in the function’s preamble.

Initialization

N. JSF++ Definition
143 Variables will not be introduced until they can be initialized with meaningful values. (See also AV Rule

136, AV Rule 142, and AV Rule 73 concerning declaration scope, initialization before use, and default
constructors respectively.)

Types

N. JSF++ Definition
146 Floating point implementations shall comply with a defined floating point standard.

The standard that will be used is the ANSI/IEEE® Std 754 [1].

Unions and Bit Fields

N. JSF++ Definition
155 Bit-fields will not be used to pack data into a word for the sole purpose of saving space.

Operators

N. JSF++ Definition
167 The implementation of integer division in the chosen compiler shall be determined, documented and

taken into account.

7 Coding Rule Sets and Concepts

7-70

Type Conversions

N. JSF++ Definition
183 Every possible measure should be taken to avoid type casting.

Expressions

N. JSF++ Definition
204 A single operation with side-effects shall only be used in the following contexts:

1 by itself
2 the right-hand side of an assignment
3 a condition
4 the only argument expression with a side-effect in a function call
5 condition of a loop
6 switch condition
7 single part of a chained operation

Memory Allocation

N. JSF++ Definition
207 Unencapsulated global data will be avoided.

Portable Code

N. JSF++ Definition
210 Algorithms shall not make assumptions concerning how data is represented in memory (e.g. big

endian vs. little endian, base class subobject ordering in derived classes, nonstatic data member
ordering across access specifiers, etc.).

210.1 Algorithms shall not make assumptions concerning the order of allocation of nonstatic data members
separated by an access specifier.

211 Algorithms shall not assume that shorts, ints, longs, floats, doubles or long doubles begin at particular
addresses.

212 Underflow or overflow functioning shall not be depended on in any special way.
214 Assuming that non-local static objects, in separate translation units, are initialized in a special order

shall not be done.

Efficiency Considerations

N. JSF++ Definition
216 Programmers should not attempt to prematurely optimize code.

Miscellaneous

N. JSF++ Definition
217 Compile-time and link-time errors should be preferred over run-time errors.

 JSF AV C++ Coding Rules

7-71

N. JSF++ Definition
218 Compiler warning levels will be set in compliance with project policies.

Testing

N. JSF++ Definition
219 All tests applied to a base class interface shall be applied to all derived class interfaces as well. If the

derived class poses stronger postconditions/invariants, then the new postconditions /invariants shall
be substituted in the derived class tests.

220 Structural coverage algorithms shall be applied against flattened classes.
221 Structural coverage of a class within an inheritance hierarchy containing virtual functions shall

include testing every possible resolution for each set of identical polymorphic references.

7 Coding Rule Sets and Concepts

7-72

Configure Target and Compiler Options

8

Specify Target Environment and Compiler Behavior
Before verification, specify your source code language (C or C++), target processor, and the compiler
that you use for building your code. In certain cases, to emulate your compiler behavior, you might
have to specify additional options.

Using your specification, the verification determines the sizes of fundamental types, considers certain
macros as defined, and interprets compiler-specific extensions of the Standard. If the options do not
correspond to your run-time environment, you can encounter:

• Compilation errors
• Verification results that might not apply to your target

If you use a build command such as gmake to build your code and the build command meets certain
restrictions, you can extract the options from the build command. Otherwise, specify the options
explicitly.

Extract Options from Build Command
If you use build automation scripts to build your source code, you can set up a Polyspace project from
your scripts. The options associated with your compiler are specified in that project.

In the Polyspace desktop products, for information on how to trace your build command from the:

• Polyspace user interface, see “Add Source Files for Analysis in Polyspace User Interface”
(Polyspace Bug Finder).

• DOS or UNIX® command line, see polyspace-configure.

8 Configure Target and Compiler Options

8-2

• MATLAB command line, see polyspaceConfigure.

In the Polyspace server products, for information on how to trace your build command, see “Create
Polyspace Analysis Configuration from Build Command” (Polyspace Bug Finder Server).

For Polyspace project creation, your build automation script (makefile) must meet certain
requirements. See “Requirements for Project Creation from Build Systems” (Polyspace Bug Finder).

Specify Options Explicitly
If you cannot trace your build command and therefore manually create a project, you have to specify
the options explicitly.

• In the user interface of the Polyspace desktop products, select a project configuration. On the
Configuration pane, select Target & Compiler. Specify the options.

• At the DOS or UNIX command line, specify flags with the polyspace-bug-finder, polyspace-
code-prover, polyspace-bug-finder-server or polyspace-code-prover-server
command.

• At the MATLAB command line, specify arguments with the polyspaceBugFinder,
polyspaceCodeProver, polyspaceBugFinderServer or polyspaceCodeProverServer
function.

Specify the options in this order.

• Required options:

• Source code language (-lang): If all files have the same extension .c or .cpp, the
verification uses the extension to determine the source code language. Otherwise, explicitly
specify the option.

• Compiler (-compiler): Select the compiler that you use for building your source code. If
you cannot find your compiler, use an option that closely matches your compiler.

• Target processor type (-target): Specify the target processor on which you intend to
execute your code. For some processors, you can change the default specifications. For
instance, for the processor hc08, you can change the size of types double and long double
from 32 to 64 bits.

If you cannot find your target processor, you can create your own target and specify the sizes
of fundamental types, default signedness of char, and endianness of the target machine. See
Generic target options.

• Language-specific options:

• C standard version (-c-version): The default C language standard depends on your
compiler specification. If you do not specify a compiler explicitly, the default analysis uses the
C99 standard. Specify an earlier standard such as C90 or a later standard such as C11.

• C++ standard version (-cpp-version): The default C++ language standard depends on
your compiler specification. If you do not specify a compiler explicitly, the default analysis uses
the C++03 standard. Specify later standards such as C++11 or C++14.

• Compiler-specific options:

Whether these options are available or not depends on your specification for Compiler (-
compiler). For instance, if you select a visual compiler, the option Pack alignment value

 Specify Target Environment and Compiler Behavior

8-3

(-pack-alignment-value) is available. Using the option, you emulate the compiler option /Zp
that you use in Visual Studio.

For all compiler-specific options, see “Target and Compiler” (Polyspace Bug Finder).
• Advanced options:

Using these options, you can modify the verification results. For instance, if you use the option
Division round down (-div-round-down), the verification considers that quotients from
division or modulus of negative numbers are rounded down. Use these options only if you use
similar options when compiling your code.

For all advanced options, see “Target and Compiler” (Polyspace Bug Finder).
• Compiler header files:

If you specify the diab, tasking or greenhills compiler, you must specify the path to your
compiler header files. See “Provide Standard Library Headers for Polyspace Analysis” (Polyspace
Bug Finder).

If you still see compilation errors after running analysis, you might have to specify other options:

• Define macros: Sometimes, a compilation error occurs because the analysis considers a macro as
undefined. Explicitly define these macros. See Preprocessor definitions (-D).

• Specify include files: Sometimes, a compilation error occurs because your compiler defines
standard library functions differently from Polyspace and you do not provide your compiler include
files. Explicitly specify the path to your compiler include files. See “Provide Standard Library
Headers for Polyspace Analysis” (Polyspace Bug Finder).

See Also
C standard version (-c-version) | C++ standard version (-cpp-version) | Compiler
(-compiler) | Preprocessor definitions (-D) | Source code language (-lang) |
Target processor type (-target)

More About
• “C/C++ Language Standard Used in Polyspace Analysis” (Polyspace Bug Finder)
• “Provide Standard Library Headers for Polyspace Analysis” (Polyspace Bug Finder)

8 Configure Target and Compiler Options

8-4

C/C++ Language Standard Used in Polyspace Analysis
The Polyspace analysis adheres to a specific language standard for code compilation. The language
standard, along with your compiler specification, defines the language elements that you can use in
your code. For instance, if the Polyspace analysis uses the C99 standard, C11 features such as use of
the thread support library from threads.h causes compilation errors.

Supported Language Standards
The Polyspace analysis supports these standards:

• C: C90, C99, C11

The default standard depends on your compiler specification. If you do not specify a compiler
explicitly, the default analysis uses the C99 standard. To change the language standard, use the
option C standard version (-c-version).

• C++: C++03, C++11, C++14

The default standard depends on your compiler specification. If you do not specify a compiler
explicitly, the default analysis uses the C++03 standard. To change the language standard, use the
option C++ standard version (-cpp-version).

Default Language Standard
The default language standard depends on your specification for the option Compiler (-
compiler).

Compiler C Standard C++ Standard
generic C99 C++03
gnu3.4, gnu4.6, gnu4.7,
gnu4.8, gnu4.9

C99 C++03

gnu5.x C11 C++03
gnu6.x C11 C++14
gnu7.x C11 C++14
gnu8.x C11 C++14
clang3.x C99 C++03

The analysis accepts some C+
+11 extensions.

clang4.x C99 C++03

The analysis accepts C++14
extensions.

clang5.x C99 C++03

The analysis accepts C++14
extensions.

 C/C++ Language Standard Used in Polyspace Analysis

8-5

Compiler C Standard C++ Standard
visual9.0, visual10.0,
visual11.0, visual12.0

C99 C++03

visual14.0 C99 C++14
visual15.x C99 C++14
visual16.x C99 C++14
keil C99 C++03
iar C99 C++03
armcc C99 C++03
armclang C11 C++03
codewarrior C99 C++03
cosmic C99 Not supported
diab C99 C++03
greenhills C99 C++03
iar-ew C99 C++03
microchip C99 Not supported
renesas C99 C++03
tasking C99 C++03
ti C99 C++03

See Also
C standard version (-c-version) | C++ standard version (-cpp-version) | Compiler
(-compiler)

More About
• “C11 Language Elements Supported in Polyspace” (Polyspace Bug Finder)
• “C++11 Language Elements Supported in Polyspace” (Polyspace Bug Finder)
• “C++14 Language Elements Supported in Polyspace” (Polyspace Bug Finder)
• “C++17 Language Elements Supported in Polyspace” (Polyspace Bug Finder)

8 Configure Target and Compiler Options

8-6

C11 Language Elements Supported in Polyspace
This table provides a partial list of C language elements that have been introduced since C11 and the
corresponding Polyspace support. If your code contains non-supported constructions, Polyspace
reports a compilation error.

C11 Language Element Supported
alignas and alignof convenience macros Yes
aligned_alloc function Yes
noreturn convenience macros Yes
Generic selection Yes
Thread support library (threads.h) Yes
Atomic operations library (stdatomic.h) Yes
Atomic types with _Atomic Yes.

If you use the Clang compiler, see limitations
book for limitations on atomic data types. See
“Limitations of Polyspace Verification” (Polyspace
Code Prover).

UTF-16 and UTF-32 character utilities Yes
Bound-checking interfaces or alternative versions
of standard library functions that check for buffer
overflows (Annex K of C11)

For instance, strcpy_s is an alternative to
strcpy that checks for certain errors in the
string copy.

No.

Polyspace checks for certain run-time errors in
use of standard library functions. The checking
does not extend to these alternatives.

Anonymous structures and unions Yes
Static assert declaration Yes
Features related to error handling such as
errno_t and rsize_t typedef-s

No.

If you see compilation errors from use of these
typedef-s, explicitly specify the path to your
compiler headers. See “Provide Standard Library
Headers for Polyspace Analysis” (Polyspace Bug
Finder).

quick_exit and at_quick_exit Yes.

In Bug Finder, functions registered with
at_quick_exit appear as uncalled.

CMPLX, CMPLXF and CMPLXL macros Yes

See Also
C standard version (-c-version)

 C11 Language Elements Supported in Polyspace

8-7

More About
• “C/C++ Language Standard Used in Polyspace Analysis” (Polyspace Bug Finder)

8 Configure Target and Compiler Options

8-8

C++11 Language Elements Supported in Polyspace
This table provides a partial list of C++ language elements that have been introduced since C++11
and its corresponding Polyspace support. If your code contains nonsupported constructions,
Polyspace reports a compilation error.

C++11 Std Ref Description Supported
C++2011-DR226 Default template arguments for function templates Yes
C++2011-DR339 Solving the SFINAE problem for expressions Yes
C++2011-N1610 Initialization of class objects by rvalues Yes
C++2011-N1653 C99 preprocessor Yes
C++2011-N1720 Static assertions Yes
C++2011-N1737 Multi-declarator auto Yes
C++2011-N1757 Right angle brackets Yes
C++2011-N1791 Extended friend declarations No
C++2011-N1811 long long Yes
C++2011-N1984 auto-typed variables Yes
C++2011-N1986 Delegating constructors Yes
C++2011-N1987 Extern templates Yes
C++2011-N1988 Extended integral types Yes
C++2011-N2118 Rvalue references Yes
C++2011-N2170 Universal character name literals Yes
C++2011-N2179 Concurrency: Propagating exceptions No
C++2011-N2235 Generalized constant expressions Yes
C++2011-N2239 Concurrency: Sequence points No new syntax/

keyword is
introduced and
therefore does not
affect Polyspace
support for C++11.

C++2011-N2242 Variadic templates Yes
C++2011-N2249 New character types Yes
C++2011-N2253 Extending sizeof Yes
C++2011-N2258 Template aliases Yes
C++2011-N2340 __func__ predefined identifier Yes
C++2011-N2341 Alignment support Yes
C++2011-N2342 Standard Layout Types Yes
C++2011-N2343 Declared type of an expression Yes
C++2011-N2346 Defaulted and deleted functions Yes
C++2011-N2347 Strongly typed enums Yes

 C++11 Language Elements Supported in Polyspace

8-9

C++11 Std Ref Description Supported
C++2011-N2427 Concurrency: Atomic operations No
C++2011-N2429 Concurrency: Memory model No new syntax/

keyword is
introduced and
therefore does not
affect Polyspace
support for C++11.

C++2011-N2431 Null pointer constant Yes
C++2011-N2437 Explicit conversion operators Yes
C++2011-N2439 Rvalue references for *this Yes
C++2011-N2440 Concurrency: Abandoning a process and at_quick_exit Yes
C++2011-N2442 Unicode string literals Yes
C++2011-N2442 Raw string literals Yes
C++2011-N2535 Inline namespaces Yes
C++2011-N2540 Inheriting constructors Yes
C++2011-N2541 New function declarator syntax Yes
C++2011-N2544 Unrestricted unions Yes
C++2011-N2546 Removal of auto as a storage-class specifier Yes
C++2011-N2547 Concurrency: Allow atomics use in signal handlers No
C++2011-N2555 Extending variadic template template parameters Yes
C++2011-N2657 Local and unnamed types as template arguments Yes
C++2011-N2659 Concurrency: Thread-local storage No
C++2011-N2660 Concurrency: Dynamic initialization and destruction with

concurrency
Yes

C++2011-N2664 Concurrency: Data-dependency ordering: atomics and
memory model

No

C++2011-N2672 Initializer lists Yes
C++2011-N2748 Concurrency: Strong Compare and Exchange No
C++2011-N2752 Concurrency: Bidirectional Fences No
C++2011-N2756 Nonstatic data member initializers Yes
C++2011-N2761 Generalized attributes Yes
C++2011-N2764 Forward declarations for enums Yes
C++2011-N2765 User-defined literals Yes
C++2011-N2927 New wording for C++0x lambdas Yes
C++2011-N2928 Explicit virtual overrides Yes
C++2011-N2930 Range-based for Yes
C++2011-N3050 Allowing move constructors to throw [noexcept] Yes
C++2011-N3053 Defining move special member functions Yes

8 Configure Target and Compiler Options

8-10

C++11 Std Ref Description Supported
C++2011-N3276 decltype and call expressions Yes

See Also
C++ standard version (-cpp-version)

More About
• “C/C++ Language Standard Used in Polyspace Analysis” (Polyspace Bug Finder)
• “C++14 Language Elements Supported in Polyspace” (Polyspace Bug Finder)
• “C++17 Language Elements Supported in Polyspace” (Polyspace Bug Finder)

 C++11 Language Elements Supported in Polyspace

8-11

C++14 Language Elements Supported in Polyspace
This table provides a partial list of C++ language elements that have been introduced since C++14
and its corresponding Polyspace support. If your code contains nonsupported constructions,
Polyspace reports a compilation error.

C++14 Std Ref Description Supported
C++2014-N3323 Implicit conversion from class

type in certain contexts such as
delete or switch statement.

This C++14 feature allows
implicit conversion from class
type in certain contexts. No new
syntax/keyword is introduced
and therefore does not affect
Polyspace support for C++14.

C++2014-N3462 More SFINAE-friendly
std::result_of

Yes

C++2014-N3472 Binary literals, for instance,
0b100.

Yes

C++2014-N3545 operator() in
integral_constant template
of constexpr type

Yes

C++2014-N3637 Relation between std::async
and destructor of std::future

No new syntax/keyword is
introduced and therefore does
not affect Polyspace support for
C++14.

C++2014-N3638 Automatic deduction of return
type for functions where an
explicit return type is not
specified

Yes.

In some cases, Code Prover can
show compilation errors.

C++2014-N3642 Suffixes for user-defined literals
indicating time (h, min, s, ms,
us, ns) and strings (s)

Yes

C++2014-N3648 Initialization of captured
members in lambda functions

Yes.

In some cases, during
initialization, Code Prover can
call the corresponding
constructors more number of
times than necessary.

C++2014-N3649 Generic (polymorphic) lambda
expressions:

• Using auto type-specifier for
parameter and return type

• Conversion of generic
capture-less lambda
expressions to pointer-to-
function.

Yes

8 Configure Target and Compiler Options

8-12

C++14 Std Ref Description Supported
C++2014-N3651 Variable templates Yes
C++2014-N3652 Declarations, conditions and

loops in constexpr functions.
Yes

C++2014-N3653 Initialization of aggregate
classes with fewer initializers
than members

For instance, this initialization
has fewer initializers than
members. The member c is
initialized with the value 0 and d
is initialized with the value s.
struct S {
 int a;
 const char* b;
 int c;
 int d = b[a];};
S ss = { 1, "asdf" };

Yes

C++2014-N3654 std::quoted Yes
C++2014-N3656 std::make_unique Yes
C++2014-N3658 std::integer_sequence Yes
C++2014-N3658 std::shared_lock No.

The use of std::shared_lock
does not cause compilation
errors but the construct is not
semantically supported.

C++2014-N3664 Calling new and delete
operators in batches.

This C++14 feature clarifies
how successive calls to the new
operator are implemented. No
new syntax/keyword is
introduced and therefore does
not affect Polyspace support for
C++14.

C++2014-N3668 std::exchange Partially supported.
C++2014-N3670 Using std::get with a data

type to get one element in an
std::tuple (provided there is
only one element of the type in
the tuple)

Yes

C++2014-N3671 Overloads for std::equal,
std::mismatch and
std::is_permutation
function templates that accept
two separate ranges

Yes

C++2014-N3733 Removal of std::gets from
<cstdio>

Yes

 C++14 Language Elements Supported in Polyspace

8-13

C++14 Std Ref Description Supported
C++2014-N3776 Wording change for destructor

of std::future
No new syntax/keyword is
introduced and therefore does
not affect Polyspace support for
C++14.

C++2014-N3779 std::complex literals
representing pure imaginary
numbers with suffix i, if or il

Yes

C++2014-N3781 Use of single quotation mark as
digit separator, for instance,
1'000.

Yes

C++2014-N3786 Prohibiting "out of thin air'
results in C++14

No new syntax/keyword is
introduced and therefore does
not affect Polyspace support for
C++14.

C++2014-N3910 Synchronizing behavior of signal
handlers

No new syntax/keyword is
introduced and therefore does
not affect Polyspace support for
C++14.

C++2014-N3924 Discouraging use of rand() No new syntax/keyword is
introduced and therefore does
not affect Polyspace support for
C++14.

C++2014-N3927 Lock-free executions No new syntax/keyword is
introduced and therefore does
not affect Polyspace support for
C++14.

See Also
C++ standard version (-cpp-version)

More About
• “C/C++ Language Standard Used in Polyspace Analysis” (Polyspace Bug Finder)
• “C++11 Language Elements Supported in Polyspace” (Polyspace Bug Finder)
• “C++17 Language Elements Supported in Polyspace” (Polyspace Bug Finder)

8 Configure Target and Compiler Options

8-14

C++17 Language Elements Supported in Polyspace
This table provides a partial list of C++ language elements that have been introduced since C++17
and its corresponding Polyspace support. If your code contains nonsupported constructions,
Polyspace reports a compilation error.

C++17 Std Ref Description Supported
C++2017-N3921 std::string-view: Observe the content of an

std::string object without owning the resource
Yes

C++2017-N3922 • When used in copy-list-initialization, auto
deduces the type to be an
std::initializer_list if the elements of the
initializer list have an identical type. Otherwise,
the auto deduction is ill-formed.

• When using direct list-initialization with a braced
initializer list containing a single element, auto
deduces the type from that element.

• When using direct list-initialization with a braced
initializer list containing more than a single
element, auto deduction of type is ill-formed.

Yes

C++2017-N3928 The static_assert declaration no longer requires
a second argument. Invoking static_assert with
no message is now allowed: static_assert(N >
0);

Yes

C++2017-N4051 C++ has templates that are not class templates,
such as a template that takes templates as an
argument. Previously, declaring such template-
template parameters required the use of the class
keyword. In C++17, you can use typename when
declaring template-template parameters , such as:

template <template <typename> typename Tmpl> struct X;

Yes

C++2017-N4086 Starting in C++17, trigraphs are no longer
supported.

No

C++2017-N4230 Starting in C++17, use a qualified name in a
namespace definition to define several nested
namespaces at once. For instance, these code
snippets are equivalent:

• namespace base::derived{
//..
}

• namespace {
 namespace derived{
 //...
 }
}

Yes

 C++17 Language Elements Supported in Polyspace

8-15

C++17 Std Ref Description Supported
C++2017-N4259 The function std::uncaught_exceptions is

introduced in C++17, which returns the number of
exceptions in your code that are not handled. The
function std:uncaught_exception, which returns
a Boolean value, is deprecated.

Yes

C++2017-N4266 Starting in C++17, namespaces and enumerators
can be annotated with attributes to allows clearer
communication of developer intention.

Yes

C++2017-N4267 Starting in C++17, the prefix u8 is supported. This
prefix creates a UTF-8 character literal. The value of
the UTF-8 character literal is equal to its ISO 10646
code point value if the code point value is in the C0
Controls and Basic Latin Unicode block.

Yes

C++2017-N4268 Allow constant evaluation of nontype template
arguments.

Yes

C++2017-N4295 Allow fold expressions Yes
C++2017-N4508 Allow untimed std::shared_mutex The use of

std::shared_mutex does
not cause a compilation
error. Polyspace does not
support sharing mutex
objects by using
std::shared_mutex.

C++2017-
P0001R1

Remove the use of the register keyword Yes

C++2017-
P0002R1

Remove operator++(bool) Yes

C++2017-
P0003R5

Remove deprecated exception specifications by
using throw(<>)

Bug Finder removes the
exception specification
specified by using throw()
statements. Code Prover
raises a compilation error
when throw() statements
are present in C++17 code.

C++2017-
P0012R1

Make exception specifications part of the type
system

Yes

C++2017-
P0017R1

Aggregate initialization of classes with base classes Yes

C++2017-
P0018R3

Allow capturing the pointer *this in Lambda
expressions

Yes

C++2017-
P0024R2

Standardization of the C++ technical specification
for Extension for Parallelism

Polyspace supports this
feature when you use the
Visual 15.x and Intel C++
18.0 compilers.

8 Configure Target and Compiler Options

8-16

C++17 Std Ref Description Supported
C++2017-
P002842

Using attribute namespaces without repetition Yes

C++2017-
P0035R4

Dynamic memory allocation for over-aligned data Yes

C++2017-
P0036R0

Unary fold expressions and empty parameter packs Yes

C++2017-
P0061R1

Use of __has_include in preprocessor conditionals Yes

C++2017-
P0067R5

Elementary string conversions No

C++2017-
P0083R3

Splicing maps and sets Polyspace supports this
feature when the compiler
you use also supports this
feature. For instance,
Polyspace supports this
feature when you use g++
as compiler.

C++2017-
P0088R3

std::variant Partially supported.

C++2017-
P0091R3

Template argument deduction for class templates Partially supported.

C++2017-
P0127R2

Non-type template parameters that have auto type Yes

C++2017-
P0135R1

Guaranteed copy elision Partially supported.

C++2017-
P0136R1

New specification for inheriting constructors No

C++2017-
P0137R1

Replacement of class objects containing reference
members

Yes

C++2017-
P0138R2

Direct-list-initialization of enumerations Yes

C++2017-
P0145R3

Stricter expression evaluation order No new syntax/keyword is
introduced and therefore
does not affect Polyspace
support for C++17.

C++2017-
P0154R1

Hardware interference size Supported with Visual
Studio Compiler

C++2017-
P0170R1

constexpr Lambda expressions Partially supported

C++2017-
P018R0

Differing begin and end types in range-based for
loops

Yes

C++2017-
P0188R1

[[fallthrough]] attribute Yes

 C++17 Language Elements Supported in Polyspace

8-17

C++17 Std Ref Description Supported
C++2017-
P0189R1

[[nodiscard]] attribute Yes

C++2017-
P0195R2

Pack expansions in using-declarations Yes

C++2017-
P0212R1

[[maybe_unused]] attribute Yes

C++2017-
P0217R3

Structured Bindings Polyspace does not support
binding by using an rvalue.

C++2017-
P0218R1

std::filesystem No

C++2017-
P0220R1

std::any Yes

C++2017-
P0220R1

std::optional Bug Finder supports the
syntax. The semantics are
partially supported. Code
Prover does not support this
feature.

C++2017-
P0226R1

Mathematical special functions No

C++2017-
P0245R1

Hexadecimal floating-point literals Yes

C++2017-
P0283R2

Ignore unknown attributes Yes

C++2017-
P0292R2

constexpr if statements Yes

C++2017-
P0298R3

std::byte Yes

C++2017-
P0305R1

init-statements for if and switch Yes

C++2017-
P0386R2

Inline variables No

C++2017-
P0522R0

Invoke partial ordering to determine when a
template template-argument is a valid match for a
template-parameter

Partially supported

See Also
C++ standard version (-cpp-version)

More About
• “C/C++ Language Standard Used in Polyspace Analysis” (Polyspace Bug Finder)
• “C++11 Language Elements Supported in Polyspace” (Polyspace Bug Finder)
• “C++14 Language Elements Supported in Polyspace” (Polyspace Bug Finder)

8 Configure Target and Compiler Options

8-18

Provide Standard Library Headers for Polyspace Analysis
Before Polyspace analyzes the code for bugs and run-time errors, it compiles your code. Even if the
code compiles with your compiler, you can see compilation errors with Polyspace. If the error comes
from a standard library function, it usually indicates that Polyspace is not using your compiler
headers. To work around the errors, provide the path to your compiler headers.

This topic shows how to locate the standard library headers from your compiler. The code examples
cause a compilation error that shows the location of the headers.

• To locate the folder containing your C compiler system headers, compile this C code by using your
compilation toolchain:

float fopen(float f);
#include <stdio.h>

The code does not compile because the fopen declaration conflicts with the declaration inside
stdio.h. The compilation error shows the location of your compiler implementation of stdio.h.
Your C standard library headers are all likely to be in that folder.

• To locate the folder containing your C++ compiler system headers, compile this C++ code by
using your compilation toolchain:

namespace std {
 float cin;
}
#include <iostream>

The code does not compile because the cin declaration conflicts with the declaration inside
iostream.h. The compilation error shows the location of your compiler implementation of
iostream.h. Your C++ standard library headers are all likely to be in that folder.

After you locate the path to your compiler's header files, specify the path for the Polyspace analysis.
For C++ code, specify the paths to both your C and C++ headers.

• In the user interface (Polyspace desktop products), add the folder to your project.

For more information, see “Add Source Files for Analysis in Polyspace User Interface” (Polyspace
Bug Finder).

• At the command line, use the flag -I with the polyspace-bug-finder, polyspace-code-
prover, polyspace-bug-finder-server or polyspace-code-prover-server command..

For more information, see -I.

See Also

More About
• “Errors from Conflicts with Polyspace Header Files” (Polyspace Bug Finder)

 Provide Standard Library Headers for Polyspace Analysis

8-19

Requirements for Project Creation from Build Systems
For automatic project creation from build systems, your build commands or makefiles must meet
certain requirements.

Compiler Requirements
• Your compiler must be called locally.

If you use a compiler cache such as ccache or a distributed build system such as distmake, the
software cannot trace your build. You must deactivate them.

• Your compiler must perform a clean build.

If your compiler performs only an incremental build, use appropriate options to build all your
source files. For example, if you use gmake, append the -B or -W makefileName option to force a
clean build. For the list of options allowed with the GNU® make, see make options.

• Your compiler configuration must be available to Polyspace. The compilers currently supported
include the following:

• arm Keil
• Clang
• Wind River® Diab
• GNU C/C++
• IAR Embedded Workbench
• Green Hills®

• NXP CodeWarrior®

• Renesas®

• Altium® Tasking
• Texas Instruments™
• tcc - Tiny C Compiler
• Microsoft® Visual C++®

If your compiler configuration is not available to Polyspace:

• Write a compiler configuration file for your compiler in a specific format. For more information,
see “Compiler Not Supported for Project Creation from Build Systems” (Polyspace Bug Finder).

• Contact MathWorks Technical Support. For more information, see “Contact Technical Support
About Issues with Running Polyspace” (Polyspace Bug Finder).

• If you build your code in Cygwin™, you must be using version 2.x or 3.x of Cygwin for Polyspace
project creation from your build system (for instance, Cygwin version 2.10 or 3.0).

• With the TASKING compiler, if you use an alternative sfr file with extension .asfr, Polyspace
might not be able to locate your file. If you encounter an error, explicitly #include your .asfr
file in the preprocessed code using the option Include (-include).

Typically, you use the statement #include __SFRFILE__(__CPU__) along with the compiler
option --alternative-sfr-file to specify an alternative sfr file. The path to the file is
typically Tasking_C166_INSTALL_DIR\include\sfr\regCPUNAME.asfr. For instance, if your

8 Configure Target and Compiler Options

8-20

https://www.gnu.org/software/make/manual/html_node/Options-Summary.html
https://www.mathworks.com/support/?s_tid=gn_supp

TASKING compiler is installed in C:\Program Files\Tasking\C166-VX_v4.0r1\ and you use
the CPU-related flag -Cxc2287m_104f or --cpu=xc2287m_104f, the path is C:\Program
Files\Tasking\C166-VX_v4.0r1\include\sfr\regxc2287m.asfr.

Build Command Requirements
• Your build command must run to completion without any user interaction.
• In Linux, only UNIX shell (sh) commands must be used. If your build uses advanced commands

such as commands supported only by bash, tcsh or zsh, Polyspace cannot trace your build.

In Windows, only DOS commands must be used. If your build uses advanced commands such as
commands supported only by PowerShell or Cygwin, Polyspace cannot trace your build. To see if
Polyspace supports your build command, run the command from cmd.exe in Windows. For more
information, see “Check if Polyspace Supports Build Scripts” (Polyspace Bug Finder).

• If you use statically linked libraries, Polyspace cannot trace your build. In Linux, you can install
the full Linux Standard Base (LSB) package to allow dynamic linking. For example, on Debian®

systems, install LSB with the command apt-get install lsb.
• Your build command must not use aliases.

The alias command is used in Linux to create an alternate name for commands. If your build
command uses those alternate names, Polyspace cannot recognize them.

• Your build process must not use the LD_PRELOAD mechanism.
• Your build command must be executable completely on the current machine and must not require

privileges of another user.

If your build uses sudo to change user privileges or ssh to remotely log in to another machine,
Polyspace cannot trace your build.

• If your build command uses redirection with the > or | character, the redirection occurs after
Polyspace traces the command. Therefore, Polyspace does not handle the redirection.

For example, if your command occurs as

command1 | command2

And you enter

polyspace-configure command1 | command2

When tracing the build, Polyspace traces the first command only.
• If the System Integrity Protection (SIP) feature is active on the operating system macOS El

Capitan (10.11) or a later macOS version, Polyspace cannot trace your build command. Before
tracing your build command, disable the SIP feature. You can reenable this feature after tracing
the build command.

Similar considerations apply to other security applications such as security-related products from
CylanceProtect, Avecto and Tanium.

• If your computer hibernates during the build process, Polyspace might not be able to trace your
build.

• When creating projects from build commands in the Polyspace User Interface, you might
encounter errors such as libcurl.so.4: version 'CURL_OPENSSL_3' not found. In such

 Requirements for Project Creation from Build Systems

8-21

cases, create the Polyspace project by using the command polyspace-configure in the system
command line interface, using the build command as the argument. See polyspace-configure.

Note Your environment variables are preserved when Polyspace traces your build command.

See Also
polyspace-configure

Related Examples
• “Add Source Files for Analysis in Polyspace User Interface” (Polyspace Bug Finder)

8 Configure Target and Compiler Options

8-22

Supported Keil or IAR Language Extensions
Polyspace analysis can interpret a subset of common C/C++ language constructs and extended
keywords by default. For compiler-specific keywords, you must specify your choice of compiler. If you
specify keil or iar for Compiler (-compiler), the Polyspace verification allows language
extensions specific to the Keil or IAR compilers.

Special Function Register Data Type
Embedded control applications frequently read and write port data, set timer registers, and read
input captures. To deal with these requirements without using assembly language, some
microprocessor compilers define special data types such as sfr and sbit. Typical declarations are:

sfr A0 = 0x80;
sfr A1 = 0x81;
sfr ADCUP = 0xDE;
sbit EI = 0x80;

The declarations reside in header files such as regxx.h for the basic 80Cxxx micro processor. The
declarations customize the compiler to the target processor.

You access a register or a port by using the sfr and sbit data as follows. However, these data types
are not part of the C99 Standard.

int status,P0;

void main (void) {
 ADCUP = 0x08; /* Write data to register */
 A1 = 0xFF; /* Write data to Port */
 status = P0; /* Read data from Port */
 EI = 1; /* Set a bit (enable all interrupts) */
}

To analyze this type of code, use these options:

• Compiler (-compiler): Specify keil or iar.
• Sfr type support (-sfr-types): Specify the data type and size in bits.

For example, depending on how you define the sbit data type, you use these options:

• sbit ADST = ADCUP^7;

Use options: -compiler keil -sfr-type sfr=8
• sbit ADST = ADCUP.7;

Use options: -compiler iar -sfr-type sfr=8

The analysis then supports the Keil or IAR language extensions even if some structures, keywords,
and syntax are not part of the C99 standard.

 Supported Keil or IAR Language Extensions

8-23

Keywords Removed During Preprocessing
Once you specify the Keil or IAR compiler, the analysis recognizes compiler-specific keywords in your
code. If a keyword is not relevant for the analysis, it is removed from the source code during
preprocessing.

If you disable the keyword and use it as an identifier instead, you can encounter a compilation error
when you compile your code with Polyspace. See “Errors Related to Keil or IAR Compiler” (Polyspace
Bug Finder).

These keywords are removed during preprocessing:

• Keil: bdata, far, idata, huge, sdata
• IAR: saddr, reentrant, reentrant_idata, non_banked, plm, bdata, idata, pdata, code,

xdata, xhuge, interrupt, __interrupt, __intrinsic

The data keyword is not removed.

8 Configure Target and Compiler Options

8-24

Remove or Replace Keywords Before Compilation
The Polyspace compiler strictly follows the ANSI C99 Standard (ISO/IEC 9899:1999). If your compiler
allows deviation from the Standard, the Polyspace compilation using default options cannot emulate
your compiler. For instance, your compiler can allow certain non-ANSI keyword, which Polyspace
does not recognize by default.

To emulate your compiler closely, you specify the Target & Compiler (Polyspace Bug Finder) options.
If you still get compilation errors from unrecognized keywords, you can remove or replace them only
for the purposes of verification. The option Preprocessor definitions (-D) allows you to make
simple substitutions. For complex substitutions, for instance to remove a group of space-separated
keywords such as a function attribute, use the option Command/script to apply to
preprocessed files (-post-preprocessing-command).

Remove Unrecognized Keywords
You can remove unsupported keywords from your code for the purposes of analysis. For instance,
follow these steps to remove the far and 0x keyword from your code (0x precedes an absolute
address).

1 Save the following template as C:\Polyspace\myTpl.pl.

Content of myTpl.pl
#!/usr/bin/perl

##
Post Processing template script
#
##
Usage from GUI:
#
1) Linux: /usr/bin/perl PostProcessingTemplate.pl
2) Windows: polyspaceroot\sys\perl\win32\bin\perl.exe <pathtoscript>\
PostProcessingTemplate.pl
#
##

$version = 0.1;

$INFILE = STDIN;
$OUTFILE = STDOUT;

while (<$INFILE>)
{

 # Remove far keyword
 s/far//;

 # Remove "@ 0xFE1" address constructs
 s/\@\s0x[A-F0-9]*//g;

 # Remove "@0xFE1" address constructs
 s/\@0x[A-F0-9]*//g;

 # Remove "@ ((unsigned)&LATD*8)+2" type constructs
 s/\@\s\(\(unsigned\)\&[A-Z0-9]+*8\)\+\d//g;

 # DON'T DELETE LINE BELOW: Print the current processed line
 print $OUTFILE $_;
}

For reference, see a summary of Perl regular expressions.

Perl Regular Expressions
###
Metacharacter What it matches

 Remove or Replace Keywords Before Compilation

8-25

###
Single Characters
. Any character except newline
[a-z0-9] Any single character in the set
[^a-z0-9] Any character not in set
\d A digit same as
\D A non digit same as [^0-9]
\w An Alphanumeric (word) character
\W Non Alphanumeric (non-word) character
#
Whitespace Characters
\s Whitespace character
\S Non-whitespace character
\n newline
\r return
\t tab
\f formfeed
\b backspace
#
Anchored Characters
\B word boundary when no inside []
\B non-word boundary
^ Matches to beginning of line
$ Matches to end of line
#
Repeated Characters
x? 0 or 1 occurrence of x
x* 0 or more x's
x+ 1 or more x's
x{m,n} Matches at least m x's and no more than n x's
abc All of abc respectively
to|be|great One of "to", "be" or "great"
#
Remembered Characters
(string) Used for back referencing see below
\1 or $1 First set of parentheses
\2 or $2 First second of parentheses
\3 or $3 First third of parentheses
##
Back referencing
#
e.g. swap first two words around on a line
red cat -> cat red
s/(\w+) (\w+)/$2 $1/;
#
##

2 On the Configuration pane, select Environment Settings.
3

To the right of Command/script to apply to preprocessed files, click .
4 Use the Open File dialog box to navigate to C:\Polyspace.
5 In the File name field, enter myTpl.pl.
6 Click Open. You see C:\Polyspace\myTpl.pl in the Command/script to apply to

preprocessed files field.

8 Configure Target and Compiler Options

8-26

Remove Unrecognized Function Attributes
You can remove unsupported function attributes from your code for the purposes of analysis.

If you run verification on this code specifying a generic compiler, you can see compilation errors from
the noreturn attribute. The code compiles using a GNU compiler.

void fatal () __attribute__ ((noreturn));

void fatal (/* ... */)
{
 /* ... */ /* Print error message. */ /* ... */
 exit (1);
}

If the software does not recognize an attribute and the attribute does not affect the code analysis, you
can remove it from your code for the purposes of verification. For instance, you can use this Perl
script to remove the noreturn attribute.

while ($line = <STDIN>)
{

__attribute__ ((noreturn))

 # Remove far keyword
 $line =~ s/__attribute__\ \(\(noreturn\)\)//g;

 # Print the current processed line to STDOUT
 print $line;
}

Specify the script using the option Command/script to apply to preprocessed files (-
post-preprocessing-command).

See Also
Polyspace Analysis Options
Command/script to apply to preprocessed files (-post-preprocessing-command) |
Preprocessor definitions (-D)

Related Examples
• “Troubleshoot Compilation Errors” (Polyspace Bug Finder)

 Remove or Replace Keywords Before Compilation

8-27

Gather Compilation Options Efficiently
Polyspace verification can sometimes stop in the compilation or linking phase due to the following
reasons:

• The Polyspace compiler strictly follows a C or C++ Standard (depending on your choice of
compiler). See “C/C++ Language Standard Used in Polyspace Analysis” (Polyspace Bug Finder). If
your compiler allows deviation from the Standard, the Polyspace compilation using default options
cannot emulate your compiler.

• Your compiler declares standard library functions with argument or return types different from
the standard types. Unless you also provide the function definition, for efficient verification,
Polyspace uses its own definitions of standard library functions, which have the usual prototype.
The mismatch in types causes a linking error.

You can easily work around the compilation and standard library function errors. To work around the
errors, you typically specify certain analysis options. In some cases, you might have to add a few lines
to your code. For instance:

• To emulate your compiler behavior more closely, you specify the Target & Compiler (Polyspace
Bug Finder) options. If you still face compilation errors, you might have to remove or replace
certain unrecognized keywords using the option Preprocessor definitions (-D). However,
the option allows only simple substitution of a string with another string. For more complex
replacements, you might have to add #define statements to your code.

• To avoid errors from stubbing standard library functions, you might have to #define certain
Polyspace-specific macros so that Polyspace does not use its own definition of standard library
functions.

Instead of adding these modifications to your original code, create a single polyspace.h file that
contains all modifications. Use the option Include (-include) to force inclusion of the
polyspace.h file in all source files under verification.

Benefits of this approach include:

• The error detection is much faster since it will be detected during compilation rather than in the
link or subsequent phases.

• There will be no need to modify original source files.
• The file is automatically included as the very first file in the original .c files.
• The file is reusable for other projects developed under the same environment.

Example 8.1. Example

This is an example of a file that can be used with the option Include (-include).

// The file may include (say) a standard include file implicitly
// included by the cross compiler

#include <stdlib.h>
#include "another_file.h"

// Workarounds for compilation errors
#define far
#define at(x)

8 Configure Target and Compiler Options

8-28

// Workarounds for errors due to redefining standard library functions

#define POLYSPACE_NO_STANDARD_STUBS // use this flag to prevent the
 //automatic stubbing of std functions
#define __polyspace_no_sscanf
#define __polyspace_no_fgetc
void sscanf(int, char, char, char, char, char);
void fgetc(void);

See Also

More About
• “Troubleshoot Compilation Errors” (Polyspace Bug Finder)

 Gather Compilation Options Efficiently

8-29

Approximations Used During Bug Finder
Analysis

9

Inputs in Polyspace Bug Finder
A Bug Finder analysis by default does not return a defect caused by a special value of an unknown
input, unless the input is bounded. Polyspace makes no assumption about the value of unbounded
inputs when your source code is incomplete. For example, in the following code Bug Finder detects a
division by zero in foo_1(), but not in foo_2():

int foo_1(int p)
{
 int x = 0;
 if (p > -10 && p < 10) /* p is bounded by if statement */
 x = 100/p; /* Division by zero detected */

 return x;
}

int foo_2(int p) /* p is unbounded */
{
 int x = 0;
 x = 100/p; /* Division by zero not detected */

 return x;
}

To set bounds on your input, add constraints in your code such as assert or if. At the cost of a
possibly longer runtime, you can perform a more exhaustive analysis where all values of function
inputs are considered when showing defects. See “Extend Bug Finder Checkers to Find Defects from
Specific System Input Values” (Polyspace Bug Finder Server).

See Also
“Global Variables in Polyspace Bug Finder” on page 9-3 | “Bug Finder Analysis Assumptions”

9 Approximations Used During Bug Finder Analysis

9-2

Global Variables in Polyspace Bug Finder
When you run a Bug Finder analysis, Polyspace makes certain assumptions about the initialization of
global variables. These assumptions depend on how you declare and define global variables. For
example, in this code

int foo(void) {
 return 1/gvar;
}

Bug Finder detects a division by zero defect with the variable gvar in these cases:

• You define int gvar; in the source code and provide a main function that calls foo. Bug Finder
follows ANSI standards that state the variable is initialized to zero.

• You define int gvar; or declare extern int gvar; in the source code. Another function calls
foo and sets gvar=0. Otherwise, when your source files are incomplete and do not contain a
main function, Bug Finder makes no assumption about the initialization of gvar.

• You declare const int gvar;. Bug Finder assumes gvar is initialized to zero due to the const
keyword.

At the cost of a possibly longer runtime, you can perform a more exhaustive analysis where all values
are considered for each read of a global variable by foo or of its callees when showing defects. See
“Extend Bug Finder Checkers to Find Defects from Specific System Input Values” (Polyspace Bug
Finder Server).

See Also
“Inputs in Polyspace Bug Finder” on page 9-2 | “Bug Finder Analysis Assumptions”

 Global Variables in Polyspace Bug Finder

9-3

Volatile Variables in Polyspace Bug Finder
You use the volatile keyword to inform the compiler that the value of a variable might change at
any time without an explicit write operation. When you run an analysis, Polyspace Bug Finder makes
these assumptions about volatile variables:

• Global volatile variables

• If you declare a global volatile variable as const, Polyspace uses the initialization value of the
variable or the initialization range if you use the PERMANENT Init Mode to constrain the range
of the variable externally. Polyspace uses the initialization value or range for every read of the
variable. See “External Constraints for Polyspace Analysis” (Polyspace Bug Finder).

For instance, in this code:
const volatile volatile_var; // Global variable initialized to 0
const volatile volatile_var_10=10;
const volatile volatile_var_drs=3; // Variable constrained to range [-5 .. 5]

int func(void){
 int i= 10 % volatile_var; // Defect
 int j= 10 % volatile_var_10; // No defect
 int k= 10 % volatile_var_drs; // Defect
 return i+j+k;
}

Polyspace detects an Integer division by zero defect for volatile_var since it is initialized
to zero. Polyspace detects an Integer division by zero for volatile_var_drs because it is
externally constrained to the range [-5 .. 5]. All reads of volatile_var_10 cause no defect.

• For non-const global volatile variables, Polyspace ignores the initialization value of the
variable, and then considers the input unknown for each read of the variable. If you use the
PERMANENT Init Mode to constrain the range of the variable externally, Polyspace uses this
range for every read of the variable. See “External Constraints for Polyspace Analysis”
(Polyspace Bug Finder).

For instance, in this code:
volatile volatile_var; // Global variable initialized to 0
volatile volatile_var_drs=3; // Variable constrained to range [-5 .. 5]

int func(void){
 int i= 10 % volatile_var; // No defect
 int j= 10 % volatile_var_drs; // Defect
 return i+j;
}

Polyspace detects an Integer division by zero defect for volatile_var_drs because it is
externally constrained to the range [-5 .. 5]. All reads of volatile_var cause no defect.

• Local volatile variables

Polyspace ignores the initialization value of local volatile variables, and then considers the input
unknown for each read of the variable. For example, in this code:

int foo(void){
 volatile var=0;
 return 1/var; // No defect
}

Polyspace detects no defect. You cannot use external constraints to constrain the range of local
variables.

9 Approximations Used During Bug Finder Analysis

9-4

At the cost of a possibly longer runtime, you can perform a more exhaustive analysis where Polyspace
considers all values for each read of a volatile variable. See Run stricter checks considering
all values of system inputs (-checks-using-system-input-values). When you use
this option to analyze all the preceding code examples, Polyspace detects additional Integer division
by zero defects on the lines labeled with comment // No defect, including for the local volatile
variable example.

See Also
“Inputs in Polyspace Bug Finder” on page 9-2 | “Bug Finder Analysis Assumptions”

 Volatile Variables in Polyspace Bug Finder

9-5

	Interpret Polyspace Bug Finder Results
	Interpret Bug Finder Results in Polyspace Access Web Interface
	Interpret Result Details Message
	Find Root Cause of Result

	Investigate the Cause of Empty Results List
	Dashboard
	Code Metrics Dashboard
	Quality Objectives Dashboard
	Customize Software Quality Objectives

	Call Hierarchy
	Configuration Settings
	Result Details
	Results List
	Review History
	Source Code
	Tooltips
	Examine Source Code
	Expand Macros
	View Code Block
	Navigate from Code to Model

	Track Issue in Bug Tracking Tool
	Create a Ticket
	Manage Existing Tickets

	Bug Finder Quality Objectives
	Comparing Analysis Results Against Quality Objectives

	Software Quality Objective Subsets (C:2004)
	Rules in SQO-Subset1
	Rules in SQO-Subset2

	Software Quality Objective Subsets (AC AGC)
	Rules in SQO-Subset1
	Rules in SQO-Subset2

	Software Quality Objective Subsets (C:2012)
	Guidelines in SQO-Subset1
	Guidelines in SQO-Subset2

	Avoid Violations of MISRA C 2012 Rules 8.x
	Software Quality Objective Subsets (C++)
	SQO Subset 1 – Direct Impact on Selectivity
	SQO Subset 2 – Indirect Impact on Selectivity

	Coding Rule Subsets Checked Early in Analysis
	MISRA C: 2004 and MISRA AC AGC Rules
	MISRA C: 2012 Rules

	HIS Code Complexity Metrics
	Project
	File
	Function

	Fix or Comment Polyspace Results
	Address Results in Polyspace Access Through Bug Fixes or Justifications
	Add Review Information in Result Details pane
	Comment or Annotate in Code

	Hide Known or Acceptable Polyspace Results
	Review Workflow Using Code Annotations
	Code Annotation Syntax
	Code Annotation Syntax Examples
	Alternatives to Code Annotations

	Short Names of Bug Finder Defect Checkers
	Short Names of Code Complexity Metrics
	Project Metrics
	File Metrics
	Function Metrics

	Define Custom Annotation Format
	Define Annotation Syntax Format
	Map Your Annotation to the Polyspace Annotation Syntax
	Define Multiple Custom Annotation Syntaxes

	Annotation Description Full XML Template
	Example

	Manage Results
	Filter and Sort Results in Polyspace Access Web Interface
	Filter Results

	Create Custom Filter Groups in Polyspace Access Web Interface
	Compare Analysis Results to Previous Runs
	Comparison Mode

	Classification of Defects by Impact
	High Impact Defects
	Medium Impact Defects
	Low Impact Defects

	Bug Finder Defect Groups
	Concurrency
	Cryptography
	Data flow
	Dynamic Memory
	Good Practice
	Numerical
	Object Oriented
	Programming
	Resource Management
	Static Memory
	Security
	Tainted data

	Troubleshooting Polyspace Access
	Polyspace Access ETL and Web Server services do not start
	Issue
	Possible Cause: Hyper-V Network Configuration Cannot Resolve Local Host Names

	Contact Technical Support About Polyspace Access Issues
	Resolve -xml-annotations-description Errors
	Issue
	Possible Solutions

	Configure Polyspace as You Code
	Configure Polyspace as You Code Extension in Visual Studio
	General Settings
	Project Settings

	Configure Polyspace as You Code Extension in Visual Studio Code
	Analysis Engine
	Analysis Launch Mode
	Analysis Setup
	Baseline
	Trace

	Configure Polyspace as You Code Plugin in Eclipse
	Preferences
	Configure Project

	Options Files for Polyspace Analysis
	What are Options Files
	Specifying Options Files
	Specifying Multiple Options Files

	Generate Build Options for Polyspace as You Code Analysis in Visual Studio
	Configure Polyspace as You Code to Extract Build Configuration
	Specify Analysis Options Manually
	Import Analysis Options from Polyspace Desktop Project

	Generate Build Options for Polyspace as You Code Analysis in Visual Studio Code
	Configure Polyspace as You Code to Extract Build Configuration
	Specify Analysis Options Manually
	Import Analysis Options from Polyspace Desktop Project

	Generate Build Options for Polyspace as You Code Analysis in Eclipse
	Configure Polyspace as You Code to Extract Build Configuration
	Specify Analysis Options Manually
	Import Analysis Options from Polyspace Desktop Project

	Generate Build Options for Polyspace as You Code Analysis at the Command Line
	Use polyspace-configure to Generate Build Options File
	Specify Analysis Options Manually
	Import Analysis Options from Polyspace Desktop Project

	Baseline Polyspace as You Code Results in Visual Studio
	What Baselined Results Look Like
	Baselining Steps

	Baseline Polyspace as You Code Results in Visual Studio Code
	What Baselined Results Look Like
	Baselining Steps

	Baseline Polyspace as You Code Results in Eclipse
	What Baselined Results Look Like
	Baselining Steps

	Baseline Polyspace as You Code Results on Command Line
	What Baselined Results Look Like
	Baselining Steps
	Step 1: Identify Project to Use as Baseline
	Step 2: Download Baseline
	Step 3: Use Baseline

	Configure Checkers for Polyspace as You Code in Eclipse
	Select Checkers and Coding Rules
	Modify Checker Behavior

	Configure Checkers for Polyspace as You Code in Visual Studio
	Select Checkers and Coding Rules
	Modify Checker Behavior

	Configure Checkers for Polyspace as You Code in Visual Studio Code
	Configure Checkers in Checkers File
	Modify Checkers Behavior

	Configure Checkers for Polyspace as You Code at the Command Line
	Configure Checkers and Coding Rules Directly at the Command Line
	Configure Checkers in Checkers file
	Modify Checkers Behavior

	Polyspace Bug Finder Defects Checkers Enabled by Default
	Analysis Scope of Polyspace as You Code
	Results Involve Current File Only
	Headers Included in Current File Not Analyzed

	Checkers Deactivated in Polyspace as You Code Default Analysis
	Checkers and Coding Rule Deactivated in Polyspace as You Code
	Checkers with Reduced Scope in Polyspace as You Code

	Troubleshoot Failed Analysis or Unexpected Results in Polyspace as You Code
	Issue
	Possible Solutions

	Reduce Software Complexity by Using Polyspace Checkers
	Configure Thresholds for Software Complexity Checkers
	Identify and Reduce Software Complexity

	Review Results in Polyspace as You Code
	Run Polyspace as You Code in Visual Studio and Review Results
	Confirm Installation of Extension
	Run Analysis on Save
	Run Analysis on Demand
	Review Results
	Justify Results Using Code Annotations
	View Help
	Configure Checkers and Other Settings

	Run Polyspace as You Code in Visual Studio Code and Review Results
	Confirm Installation of Extension
	Run Analysis on Save
	Run Analysis on Demand
	Review Results
	Justify Results Using Code Annotations
	View Context-Sensitive Help for Result
	Configure Checkers and Other Settings

	Run Polyspace as You Code in Eclipse and Review Results
	Confirm Installation of Plugin
	Run Analysis on Save
	Run Analysis on Demand
	Review Results
	Justify Results Using Code Annotations
	View Context-Sensitive Help for Result
	Configure Checkers and Other Settings

	Run Polyspace as You Code from Command Line and Export Results
	Add Install Folder to Path
	Run Analysis and See Results on Console
	Store Results in Specific Folder
	Export Results to JSON Format (SARIF Output)
	Specify Analysis Options by Using Options Files
	Create Options File by Analyzing Build

	Integrate Polyspace as You Code in IDEs and Editors Without Plugins
	Overview of Approach
	Integration Steps
	Further Exploration

	Coding Rule Sets and Concepts
	Polyspace MISRA C:2004 and MISRA AC AGC Checkers
	MISRA C:2004 and MISRA AC AGC Coding Rules
	Supported MISRA C:2004 and MISRA AC AGC Rules
	Troubleshooting
	List of Supported Coding Rules
	Unsupported MISRA C:2004 and MISRA AC AGC Rules

	Polyspace MISRA C:2012 Checkers
	Essential Types in MISRA C:2012 Rules 10.x
	Categories of Essential Types
	How MISRA C:2012 Uses Essential Types

	Unsupported MISRA C:2012 Guidelines
	Polyspace MISRA C++ Checkers
	Unsupported MISRA C++ Coding Rules
	Language Independent Issues
	General
	Lexical Conventions
	Expressions
	Declarations
	Classes
	Templates
	Exception Handling
	Library Introduction

	Polyspace JSF AV C++ Checkers
	JSF AV C++ Coding Rules
	Supported JSF C++ Coding Rules
	Unsupported JSF++ Rules

	Configure Target and Compiler Options
	Specify Target Environment and Compiler Behavior
	Extract Options from Build Command
	Specify Options Explicitly

	C/C++ Language Standard Used in Polyspace Analysis
	Supported Language Standards
	Default Language Standard

	C11 Language Elements Supported in Polyspace
	C++11 Language Elements Supported in Polyspace
	C++14 Language Elements Supported in Polyspace
	C++17 Language Elements Supported in Polyspace
	Provide Standard Library Headers for Polyspace Analysis
	Requirements for Project Creation from Build Systems
	Compiler Requirements
	Build Command Requirements

	Supported Keil or IAR Language Extensions
	Special Function Register Data Type
	Keywords Removed During Preprocessing

	Remove or Replace Keywords Before Compilation
	Remove Unrecognized Keywords
	Remove Unrecognized Function Attributes

	Gather Compilation Options Efficiently

	Approximations Used During Bug Finder Analysis
	Inputs in Polyspace Bug Finder
	Global Variables in Polyspace Bug Finder
	Volatile Variables in Polyspace Bug Finder

